首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
介绍了自行研制的光电离/微型正交加速飞行时间质谱仪的设计原理和性能。电离源采用光子能量为10.6 eV真空紫外灯,它可将待测分子电离只产生单电荷母体离子,不产生碎片离子。采用该光电离方法得到的质谱谱图比较简单,气体样品可以不经分离直接进行分析。离子正交引入结构的飞行时间质量分析器有效地提高了质谱分辨率。用32 cm无场飞行管,测量碘甲烷得到的质谱分辨率可达430。在谱图获得频率10 kHz的操作条件下,样品总分析时间20 s,得到苯和碘甲烷的检出限分别为10×10-6,5×10-6。软电离和微型化使得该质谱仪在可挥发性有机物的实时在线监测方面有广泛的应用。  相似文献   

2.
单颗粒气溶胶飞行时间质谱仪分析香烟烟气气溶胶   总被引:2,自引:0,他引:2  
单颗粒气溶胶飞行时间质谱可同时对气溶胶单颗粒的粒径大小、化学成分进行实时、在线检测.本研究介绍了新近研制的单颗粒质谱仪的原理、结构、主要技术指标及对香烟烟气气溶胶的应用研究.仪器采用空气动力学透镜聚焦,双光束粒径测量系统确定颗粒物的空气动力学直径,激光电离系统实现颗粒物精确电离,通过双极有网反射飞行时间质量分析器实现正负离子同时检测.香烟检测结果表明,在颗粒物粒径分布上,新鲜香烟烟气颗粒范围较老化烟气宽.在气溶胶化学成分上,老化烟气颗粒物与新鲜烟气相比,尼古丁,氰酸盐,硝酸盐,硫酸盐及铵盐5种成分的数浓度百分比都有所增加,而含C1-的数浓度百分比减少.原因可能是由于烟气由气相到粒相之间的转化,及颗粒物与空气中的气体发生了非均相反应;C1-老化之后的减少是因为HN03与CI-之间的非均相反应.  相似文献   

3.
将自行研制的真空紫外光电离成核气溶胶质谱仪用于实时在线测量超细纳米颗粒物(Dp<100 nm)的化学成分。此气溶胶质谱仪采用商品化的纳米扫描电迁移率颗粒物粒径谱仪(Nano-scanning mobility particle sizers, Nano-SMPS),选择出单分散粒径的超细纳米颗粒物,结合空气动力学透镜传输和聚焦超细纳米颗粒物进入真空腔体,进而在加热棒表面热解析气化成气态的分子,分子吸收真空紫外放电灯的光子能量(hν=10.6 eV)在其电离能阈值附近"软"电离,通过反射式飞行时间质量分析器从分子水平上在线测量获得超细纳米颗粒物的化学成分。同时,以单分散粒径的邻苯二甲酸二辛酯(Dioctyl Phthalate, DOP, C24H38O4)、α-蒎烯(α-pinene, C10H16)臭氧氧化成核反应生成的超细纳米颗粒物作为示例,结合真空紫外光电离成核气溶胶质谱仪对其化学成分进行检测分析,并对仪器性能进行了应用表征。  相似文献   

4.
同步辐射光电离质谱法研究卷烟主流烟气气相成分   总被引:1,自引:0,他引:1  
王健  翁俊桀  贾良元  潘洋 《分析化学》2012,(7):1048-1052
利用同步辐射光电离质谱法对卷烟主流烟气气相成分进行了研究。首先,利用针筒捕集主流烟气气相成分,在未进行样品处理和分离的情况下,实时、在线获得烟气的光电离质谱图;再扫描光电离效率(PIE)谱,获得气相成分的电离能(IE),并对其进行归属;最后,以商用吸烟机对卷烟进行抽吸,获得单口烟气中甲醇、乙炔等化学成分相对含量随抽吸口数增加的变化情况,并探讨了可能原因。  相似文献   

5.
真空紫外灯单光子电离源飞行时间质谱仪的研制   总被引:9,自引:0,他引:9  
谭国斌  高伟  黄正旭  洪义  傅忠  董俊国  程平  周振 《分析化学》2011,(10):1470-1475
研制了真空紫外灯单光子电离源飞行时间质谱仪(Vacuum ultraviolet single photon ionization time-offlight mass spectrometer,VUV-SPI-TOFMS),包括真空系统、毛细管进样系统、真空紫外灯电离源、垂直加速反射式飞行时间质量分析器和数据采集系统...  相似文献   

6.
本文介绍了自制的常温常压下在线实时直接分析(Direct analysis in real-time,DART)离子源的原理及结构。在国内首次成功研制DART离子源,利用其对空气中挥发的丙酮和香烟侧流烟气进行电离,通过自制高分辨率垂直引入飞行时间质谱仪(Orthogonal-injection time-of-flight mass spectrometer,O-TOF-MS)进行分析和检测,得到丙酮分子峰及团簇峰和香烟烟气中尼古丁等大部分有害成分。实验结果表明,自制DART离子源能有效地对样品进行电离,使质谱仪器的质量半峰宽分辨率优于半高宽(Full width at half maximum,FWHM)6881,达到自制DART离子源的设计及实验分析要求。  相似文献   

7.
本文介绍了自制的常温常压下在线实时直接分析(Direct analysis in real-time,DART)离子源的原理及结构。在国内首次成功研制DART离子源,利用其对空气中挥发的丙酮和香烟侧流烟气进行电离,通过自制高分辨率垂直引入飞行时间质谱仪(Orthogonal-injection time-of-flight mass spectrometer,O-TOF-MS)进行分析和检测,得到丙酮分子峰及团簇峰和香烟烟气中尼古丁等大部分有害成分。实验结果表明,自制DART离子源能有效地对样品进行电离,使质谱仪器的质量半峰宽分辨率优于半高宽(Full width at half maximum,FWHM)6881,达到自制DART离子源的设计及实验分析要求。  相似文献   

8.
研制了一种膜进样-微型飞行时间质谱仪, 该仪器使用双层50 μm硅橡胶膜作为大气压下直接进样的接口. 实验结果表明, 随着样品流速的提高, 膜富集效率信号强度呈线性提高. 双膜中间具有真空差分系统, 富集得到的样品被迅速抽走, 进样系统中样品无记忆效应. 样品在膜中的响应时间为100 s, 而打开差分系统后仅需10 s信号即下降为平稳状态. 与毛细管直接进样相比, 双层膜的富集作用显著, 在相同的实验条件下使用膜进样技术测定10×10-6 (体积分数)苯、甲苯和对二甲苯的信号强度分别提高了280, 370和600倍. 膜进样系统与真空紫外光软电离方式联用, 对于苯的检出限已经达到了25×10-9 (体积分数), 线性范围为3个数量级. 由于采用了软电离方法, 无碎片离子产生, 所以能够根据分子量进行快速定性分析. 将该仪器应用于香烟主烟气中可挥发性有机物的在线分析, 得到50多种可挥发性的有机物. 实验结果表明, 膜进样-飞行时间质谱将在在线分析(特别是环境监测)方面具有广泛的应用空间.  相似文献   

9.
本发明公开了一种全二维气相色谱–飞行时间质谱法分析环境样品中短链氯化石蜡的方法,属于分析测试技术领域。该方法包括如下步骤:(1)环境样品中SCCPs的富集提取;(2)采用全二维气相色谱电子轰击电离源低分辨飞行时间质谱仪检测;(3)采用谱库检索和保留时间指数对样品中SCCPs组分定性;(4)采用内标标准曲线法测定样品中SCCPs总量。所用前处理方法萃取效率高,净化效果好,适用范围广;所用仪器分析效率高,分离效果好,抗干扰能力强;定性方法快速、准确,可不依赖于标准物质;定量方法检出限低,灵敏度高,线性范围宽,重复性好,可满足实际环境样品中SCCPs的分析要求。  相似文献   

10.
飞行时间质谱仪新技术的进展及应用   总被引:1,自引:0,他引:1  
本文介绍了近几年来发展应用于飞行时间质谱(TOF-MS)仪中的软电离技术。质子转移电离实现了可挥发性有机物的高灵敏度分析;真空紫外灯电离源体积小、简单,利于便携式仪器;电喷雾解吸电离在线、无损和灵敏度高,在公共安全方面具有很大的发展潜力,而且还可以直接用于活的生物体表面分析;大气压下的在线直接分析电离技术利用载气分子的激发态使得被分析化合物电离得到分子离子。针对不同的电离方法简单评述了其性能及应用,同时介绍了飞行时间质谱在串联方面的新发展,以及TOF-MS在仪器微型化方面的进展及其应用,并对飞行时间质谱仪今后的发展作了展望。  相似文献   

11.
飞行时间质谱仪新技术的进展及应用   总被引:3,自引:0,他引:3  
本文介绍了近几年来发展应用于飞行时间质谱(TOF-MS)仪中的软电离技术.质子转移电离实现了可挥发性有机物的高灵敏度分析;真空紫外灯电离源体积小、简单,利于便携式仪器;电喷雾解吸电离在线、无损和灵敏度高,在公共安全方面具有很大的发展潜力,而且还可以直接用于活的生物体表面分析;大气压下的在线直接分析电离技术利用载气分子的激发态使得被分析化合物电离得到分子离子.针对不同的电离方法简单评述了其性能及应用,同时介绍了飞行时间质谱在串联方面的新发展,以及TOF-MS在仪器微型化方面的进展及其应用,并对飞行时间质谱仪今后的发展作了展望.  相似文献   

12.
飞行时间质谱仪新技术的进展及应用   总被引:2,自引:0,他引:2  
本文介绍了近几年来发展应用于飞行时间质谱(TOF-MS)仪中的软电离技术.质子转移电离实现了可挥发性有机物的高灵敏度分析;真空紫外灯电离源体积小、简单,利于便携式仪器;电喷雾解吸电离在线、无损和灵敏度高,在公共安全方面具有很大的发展潜力,而且还可以直接用于活的生物体表面分析;大气压下的在线直接分析电离技术利用载气分子的激发态使得被分析化合物电离得到分子离子.针对不同的电离方法简单评述了其性能及应用,同时介绍了飞行时间质谱在串联方面的新发展,以及TOF-MS在仪器微型化方面的进展及其应用,并对飞行时间质谱仪今后的发展作了展望.  相似文献   

13.
研制了膜进样-单光子电离-飞行时间质谱仪,并应用于水中挥发性有机物(VOCs)的连续在线快速测量.以50 μm硅橡胶膜为富集膜,用蠕动泵和电动切换阀,实现了水中VOCs的自动进样、富集和测量,无记忆效应.采用真空紫外灯发出的10.6 eV的光子,对待测有机物实现单光子电离,无碎片离子,便于根据分子量进行定性分析.苯、甲苯、二甲苯和氯苯等样品的响应时间均低于100 s; 苯的检出限可达3×10-9(V/V),且在10×10-9~1×10-6(V/V)范围内具有良好的线性.将仪器应用于某化工厂排污水的在线检测中,在200 s时间内可检测到20多种10×10-9(V/V)量级的有机物.结果表明: 膜进样-单光子电离-飞行时间质谱在水中VOCs在线检测方面具有广泛应用前景.  相似文献   

14.
谢彦  王丙星  王利  白吉玲 《分析化学》2004,32(11):1556-1559
在研究多相催化反应中,建立和发展了一套在线高灵敏的共振增强多光子电离-飞行时间质谱检测系统。采用光纤作为传输介质,消除了激光在电离池内的吸收;自制了高输入阻抗的电荷灵敏放大器,提高了信号的稳定性;改进了飞行时间质谱仪中脉冲阀的进气方式,减少了死区,实现了质谱的快速采样。实验结果证明与传统的催化检测仪器相比,本系统具有灵敏度和采样率高,在线实时检测等特点。  相似文献   

15.
利用激光解吸附电离飞行时间质谱技术获得了若干已知化学成分的气溶胶粒子的飞行时间质谱,分析标识了各类气溶胶粒子的特征离子谱峰,并对一些特征峰的形成机理进行了探讨。在此基础上,对烟花火药以及纸张燃烧产生的烟气气溶胶粒子进行了实时在线测量,通过对质谱图的分析,获得了有关此两类燃烧过程产生的烟气气溶胶单粒子的化学组成信息。  相似文献   

16.
挥发性有机物(VOCs)影响车内空气质量和驾乘者的身心健康。自主研发的在线挥发性有机物质谱仪(SPI-MS 2000),实现了有机物分子的单光子电离,产生无碎片的分子离子,可实现秒级响应,仪器的质量分辨率优于800 FWHM,质量精度优于0.02 amu,对甲苯的测定限优于3μg/m^3,且在3~8000μg/m^3范围内有良好的线性关系。将该仪器应用于某客车车内空气的在线检测:在5 s内检测到20多种微克~毫克每立方米量级的有机物。该仪器在车内VOCs现场快速监测方面有广泛的应用前景。  相似文献   

17.
研制了真空紫外光电离飞行时间质谱仪,用于研究大气自由基化学反应。采用光子能量为10.6 eV的真空紫外放电灯作为电离源,利用新型笼式离子引出装置,实现了离子的高效率传输和聚焦。结果表明,仪器的检测灵敏度可达到0.03μg/L。结合微波放电流动管反应器模拟大气化学中的气相自由基反应,并通过自由基自反应动力学实现了CH3浓度的定量分析。另外,利用真空紫外光电离飞行时间质谱仪,对CH3+NO自由基反应的动力学进行了研究,检测了反应中的产物信息,测得其在室温和300 Pa压力下的反应速率常数为k(CH3+NO)=1.2×10-12 cm3/(molecule·s)。  相似文献   

18.
在无需样品前处理的条件下,建立了直接进样单光子电离飞行时间质谱在线分析牙膏样品中香精物质的方法。本方法采用石英毛细管直接将样品导入质谱仪电离区,优化了电离区气压条件,并利用香精标准品的特征质谱信号对牙膏样品中香精成分进行了快速、准确鉴定,单个样品分析仅需0.5 min。将本方法应用于模拟刷牙过程中挥发性香精的在线、原位监测,考察了水含量对牙膏香精挥发过程的影响。结果表明,直接进样单光子电离飞行时间质谱法能够实时监控刷牙过程中挥发香精的成分与浓度,可以应用于其他样品如食品、化妆品中香精成分的分析。  相似文献   

19.
综述了软电离质谱技术原理和特点,及其在烟草及烟气中有害成分分析测定、实时在线卷烟烟气测定、致香物质的分离与鉴定、农残测定等方面展望了其在烟草化学中的应用,主要包括化学电离质谱、电喷雾电离质谱、大气压化学电离质谱、激光解吸电离质谱、单光子电离质谱等技术(引用文献54篇)。  相似文献   

20.
利用单光子电离飞行时间质谱仪对吸烟模拟装置中的新鲜主流烟气进行实时在线检测,共测得40多种挥发性有机化合物,获得不同物质在逐口吸烟过程中含量的变化情况以及不同通风率的香烟烟气中的化合物含量情况。与此同时,使用主成分分析法对不同通风率的香烟种类的新鲜烟气的谱图进行分析,结果表明,在PCA散点图中,PC1=94%,PC2=3%,PC2=1%,三者之和达到98%,不同通风率的香烟的差异显著。实现了对逐口吸烟产生的新鲜主流烟中的有机成分进行在线检测分析。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号