首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The Raman (200-4000 cm(-1)) and infrared (600-4000 cm(-1)) spectra of four rare carbonate hydrate minerals are reported. These are naturally occurring and synthetic ikaite CaCO3.6H2O, and nesquehonite MgCO3.3H2O; natural monohydrocalcite CaCO3.H2O, and synthetic lansfordite MgCO3.5H2O. The spectra of synthetic ikaite partially substituted with 2H2O and also with 13C were measured, as were those of synthetic deuteriated nesquehonite. Spectra of ikaite and lansfordite, both of which decompose at room temperatures, were measured below 0 degrees C. Assignments of fundamental modes are proposed.  相似文献   

2.
The wood resin in Scots pine (Pinus sylvestris) stemwood and branch wood were studied using UV resonance Raman (UVRR) spectroscopy. UVRR spectra of the sapwood and heartwood hexane extracts, solid wood samples and model compounds (six resin acids, three fatty acids, a fatty acid ester, sitosterol and sitosterol acetate) were collected using excitation wavelengths of 229, 244 and 257 nm. In addition, visible Raman spectra of the fatty and resin acids were recorded. Resin compositions of heartwood and sapwood hexane extracts were determined using gas chromatography. Raman signals of both conjugated and isolated double bonds of all the model compounds were resonance enhanced by UV excitation. The oleophilic structures showed strong bands in the region of 1660-1630 cm(-1). Distinct structures were enhanced depending on the excitation wavelength. The UVRR spectra of the hexane extracts showed characteristic bands for resin and fatty acids. It was possible to identify certain resin acids from the spectra. UV Raman spectra collected from the solid wood samples containing wood resin showed a band at approximately 1650 cm(-1) due to unsaturated resin components. The Raman signals from extractives in the resin rich branch wood sample gave even more strongly enhanced signals than the aromatic lignin.  相似文献   

3.
A remote Raman system has been developed utilizing a 532nm pulsed laser and gated intensified charged couple device (ICCD) detector in the oblique geometry. When the system is set for 50m sample distance it is capable of measuring Raman spectra of minerals located at distances in the range of 10-65m from the telescope. Both daytime and nighttime operations are feasible and the spectra of minerals can be measured in a short period of time, of the order of a few seconds. In oblique geometry, measured sampling depth is more than 30m, during which the system maintains very high performance without any adjustments. Much longer sampling depth (0.1-120m) has been observed when the system is configured in the coaxial geometry. Clear advantages of using a gated detection mode over the continuous (CW) mode of operation in reducing the background signal and eliminating long-lived fluorescence signals from the Raman spectra are presented. The performance of the pulsed Raman system is demonstrated by measuring spectra of Raman standards including benzene (C(6)H(6)) and naphthalene (C(10)H(8)), a low Raman cross section silicate mineral muscovite (KAl(2)(Si(3)Al)O(10)(OH)(2)), and a medium Raman cross section mineral calcite (CaCO(3)).  相似文献   

4.
大气单颗粒表面的非均相反应研究因更接近大气实际条件,避免了堆积态研究中人为引入的误差,能够得到真实的反应过程与机理,获得反映大气实际条件的动力学参数.本研究建立了使用显微拉曼光谱研究大气单颗粒非均相反应的研究方法,并初步用于研究NO2与单颗粒CaCO3的非均相反应.研究结果表明显微拉曼光谱可同时获得颗粒物的化学组成和形貌变化,并能得到化学环境如相态的信息,对于研究反应过程很有帮助;而颗粒物沉降在基质上得到的拉曼光谱因不受形貌共振影响,有利于获得高质量的光谱.此外,将拉曼光谱研究单颗粒的方法与其他单颗粒非均相反应的研究方法进行了综合比较,表明显微拉曼光谱技术在单颗粒非均相反应研究中具有重要的特点和应用价值.  相似文献   

5.
纳米/微米碳酸钙的结构表征和热分解行为   总被引:10,自引:0,他引:10  
采用棕榈酸对纳米碳酸钙进行有机表面改性, 运用SEM﹑TEM、XRD、FTIR 及TG-DTG 对表面改性前后的纳米碳酸钙进行表征, 并与微米碳酸钙的微晶结构及热分解特性进行比较. FTIR 分析结果确证了棕榈酸与纳米碳酸钙表面是以化学键合和物理吸附方式相结合, 粒子表面存在羧基等有机官能团的红外吸收特征. 对比研究发现, 碳酸钙微晶纳米化后, 其红外V3特征吸收峰出现约35 cm-1 的蓝移现象, 并且明显窄化. 初步解释了纳米碳酸钙红外吸收峰蓝移的原因, 认为尺寸效应和晶体场效应是影响纳米碳酸钙红外光谱特征的主要因素. 微晶结构的变化使得纳米碳酸钙的热分解反应表现出反常特性, 热分解温度较微米碳酸钙下降了40.6 ℃.  相似文献   

6.
The technique of Raman spectroscopy was used to examine the composition of ancient African domestic clay pottery of South African origin. One sample from each of four archaeological sites including Rooiwal, Lydenburg, Makahane and Graskop was studied. Normal dispersive Raman spectroscopy was found to be the most effective analytical technique in this study. XRF, XRD and FT-IR spectroscopy were used as complementary techniques. All representative samples contained common features, which were characterised by kaolin (Al2Si2O5(OH)5), illite (KAl4(Si7AlO20)(OH)4), feldspar (K- and NaAlSi3O8), quartz (alpha-SiO2), hematite (alpha-Fe2O3), montmorillonite (Mg3(Si,Al)4(OH)2 x 4.5 5H(2)O[Mg]0.35), and calcium silicate (CaSiO3). Gypsum (CaSO4 x 2H2O) and calcium carbonates (most likely calcite, CaCO3) were detected by Raman spectroscopy in Lydenburg, Makahane and Graskop shards. Amorphous carbon (with accompanying phosphates) was observed in the Raman spectra of Lydenburg, Rooiwal and Makahane shards, while rutile (TiO(2)) appeared only in Makahane shard. The Raman spectra of Lydenburg and Rooiwal shards further showed the presence of anhydrite (CaSO4). The results showed that South African potters used a mixture of clays as raw materials. The firing temperature for most samples did not exceed 800 degrees C, which suggests the use of open fire. The reddish brown and grayish black colours were likely due to hematite and amorphous carbon, respectively.  相似文献   

7.
Combined remote laser-induced breakdown spectroscopy (LIBS) and Raman spectroscopy investigations at a distance of 8.6m have been carried out in air and under a simulated Martian atmosphere of 933Pa (7Torr) CO(2) on calcite (CaCO(3)), gypsum (CaSO(4).2H(2)O), and elemental sulfur (S), and LIBS investigations on chalcopyrite (CuFeS(2)) and pyrite (FeS(2)). Both Raman and LIBS techniques have also been used sequentially in air on hematite-coated calcite crystals and on a sample of anhydrite covered with basaltic dust. These experiments demonstrate that by using a frequency-doubled Nd:YAG pulsed laser co-radiating 1064 nm and 532 nm laser beams with a 5x beam expander, it is possible to measure simultaneously both the Raman and LIBS spectra of calcite, gypsum and elemental sulfur by adjusting the laser power electronically. The spectra of calcite, gypsum, and elemental sulfur contain fingerprint Raman lines; however, it was not possible to measure the remote Raman spectra of pyrite and chalcopyrite because of low intensities of Raman lines. In the cases of CuFeS(2), FeS(2), and elemental sulfur, S atomic emission lines in the LIBS spectra were detected only in 7Torr of CO(2) pressure and not in air. No S atomic emission lines were detected for gypsum in air or in CO(2). In the case of coated/dusted minerals, it was possible to remove the coating or dust with the focused LIBS laser and measure the Raman spectra of subsurface minerals with a 532 nm laser excitation. The complementary nature of these two techniques is highlighted and discussed.  相似文献   

8.
It is well known that WO(3) interacts efficiently with H(2) gas in the presence of noble metals (such as Pd, Pt and Au) at elevated temperatures, changing its optical behaviors; and that its crystallinity plays an important role in these interactions. For the first time, we investigated the in situ Raman spectra changes of WO(3) films of different crystal phases, while incorporating Pd catalysts, at elevated temperatures in the presence of H(2). The Pd/WO(3) films were prepared using RF sputtering and subsequently annealed at 300, 400 and 500 °C in air in order to alter the dominant crystal phase. The films were then characterized using SEM, XRD, XPS, and both UV-VIS and Raman spectroscopy. In order to fundamentally study the process, the measurements were conducted when films were interacting with 1% H(2) in synthetic air at elevated sample temperatures (20, 60, 100 and 140 °C). We suggest that the changes of Raman spectra under such conditions to be mainly a function of the crystal phase, transforming from monoclinic to a mix phase of monoclinic and orthorhombic achieved via increasing the annealing temperature. The as-deposited sample consistently shows similar Raman spectra responses at different operating conditions upon H(2) exposure. However, increasing the annealing temperature to 500 °C tunes the optimum H(2) response operating temperature to 60 °C.  相似文献   

9.
The Raman spectroscopic analysis of a Brazilian tembetá, a lip-plug which signifies the attainment of manhood in tribal cultures, and dated to about 1600 years BP is reported. Tembetá are usually made of wood or stone but this lip-plug is very rare in that it is made of resin, which has been severely degraded in the burial environment; the brownish-red fragmented remains are in an extremely fragile condition and information about the chemical composition was required before urgent conservation was undertaken. Raman spectra excited at 1064 nm showed the presence of triterpenoid materials in the main body of the artefact, and indicated that the red-brown coating was not iron(III) oxide as suspected but rather degraded resin. Comparison with contemporary resins has facilitated the partial identification of the material in this important artefact as a triterpenoid-rich material, which is closely similar to the Pistacia species. A possible archaeological link to the Jatobá do Cerrado (Hymenaea stigonocarpa Mart.) resin has been excluded as the Raman spectra of this resin specimen and the tembetá do not match; indeed, the Jatobá do Cerrado resin specimen belongs to a diterpenoid-rich classification as befits its Hymenaea species.  相似文献   

10.
Hydrophilic extracts of Scots pine (Pinus sylvestris) heartwood and sapwood and a solid Scots pine knotwood sample were studied by UV resonance Raman spectroscopy (UVRRS). In addition, UVRR spectra of two hydrophilic model compounds (pinosylvin and chrysin) were analysed. UV Raman spectra were collected using 244 and 257 nm excitation wavelengths. The chemical composition of the acetone:water (95:5 v/v) extracts were also determined by gas chromatography. The aromatic and oleophilic structures of pinosylvin and chrysin showed three intense resonance enhanced bands in the spectral region of 1649-1548 cm(-1). Pinosylvin showed also a relatively intense band in the aromatic substitution region at 996 cm(-1). The spectra of the heartwood acetone:water extract showed many bands typical of pinosylvin. In addition, the extract included bands distinctive for resin and fatty acids. The sapwood acetone:water extract showed bands due to oleophilic structures at 1655-1650 cm(-1). The extract probably also contained oligomeric lignans because the UVRR spectra were in parts similar to that of guaiacyl lignin. The characteristic band of pinosylvin (996 cm(-1)) was detected in the UVRR spectrum of the resin rich knotwood. In addition, several other bands typical for wood resin were observed, which indicated that the wood resin in the knotwood was resonance enhanced even more than lignin.  相似文献   

11.
《Vibrational Spectroscopy》2002,28(2):243-249
In this work, the vibrational spectra (FT-Raman and infrared spectra) of brazilin, the major component of brazilwood Caesalpinia echinata (from Bahia, Brazil), and brazilein, the oxidised pigment, are investigated. The FT-Raman spectra of the compounds show different patterns in the carbonyl stretching region, where brazilein presents a Raman feature at 1697 cm−1 that is tentatively assigned to a coupled vibrational mode described by CO and aromatic CC stretching. Infrared measurements are used to support this assignment. The spectral region between 1700 and 1500 cm−1 is also proposed as a fingerprint for brazilin and brazilein. Comparisons with some quinones and polyalcohols as parent molecules and other deep red resin pigments such as “dragon’s blood” are undertaken to assist the vibrational assignment. As a test of the spectroscopic protocol for the identification of these pigments in natural brazilwoods, an 80-year-old archival specimen of Caesalpinia echinata was analysed non-destructively and the feature of brazilein shown from the Raman spectrum.  相似文献   

12.
The infrared (IR) and Raman spectra of 3,5-dimethylpyrazole have been recorded in the vapor, liquid (melt and solution) and solid states. Two deuterated derivatives, C5H7N-ND and C5D7N-NH, were also studied in solid state and in solutions. Instrumental resolution was relatively low, 2.0 cm(-1) in the IR and approximately 2.7 cm(-1) in the Raman spectra. The solids are made of cyclic hydrogen-bonded trimers. These trimers, present also in chloroform and acetone solutions, give rise to characteristic high absorption IR spectra in the 3200-2500 cm(-1) region, related to Fermi resonance involving nu(NH) vibrations. Bands from trimers are not present in water solutions but these solutions show spectral features similar in several ways to those of the trimer, attributable to solvent-bonded complexes. Evidence of H-bonding interactions with the other solvents is also visible in the high-frequency region. The two very intense bands in the Raman spectra of the solids appearing at 115 and 82 cm(-1) in the parent compound are also connected with a trimer formation. To interpret the experimental data, ab initio computations of the harmonic vibrational frequencies and IR and Raman intensities were carried out using the Gaussian 94 program package after full optimization at the RHF/6-31G* level for the three monomeric compounds as well as for three models of the trimer, with C3h, C3 and C1 symmetry. The combined use of experiments and computations allow a firm assignment of most of the observed bands for all the systems. In general, the agreement between theory and experiment is very good, with the exception of the IR and Raman intensities of some transitions. Particularly noticeable is the failure of the theoretical calculation in accounting for the high intensity of the Raman bands of the solid about 115 and 82 cm(-1).  相似文献   

13.
The salt 1,1,3,3-tetramethylguanidinium bromide, [((CH(3))(2)N)(2)C═NH(2)](+)Br(-) or [tmgH]Br, was found to melt at 135(5) °C, forming what may be referred to as a moderate temperature ionic liquid. The chemistry was studied and compared with the corresponding chloride compound. We present X-ray diffraction and Raman evidence to show that also the bromide salt contains dimeric ion pair "molecules" in the crystalline state and probably also in the liquid state. The structure of [tmgH]Br determined at 120(2) K was found to be monoclinic, space group P2(1)/n, with a = 7.2072(14), b = 13.335(3), c = 9.378(2) ?, β =104.31(3)°, Z = 2, based on 11769 reflections, measured from θ = 2.71-28.00° on a small colorless needle crystal. Raman and IR spectra are presented and assigned. When heated, both the chloride and the bromide salts form vapor phases. The Raman spectra of the vapors are surprisingly alike, showing, for example, a characteristic strong band at 2229 cm(-1). This band was interpreted by some of us to show that the [tmgH]Cl gas phase should consist of monomeric ion pair "molecules" held together by a single N-H(+)···Cl(-) hydrogen bond, the stretching vibration of which should be causing the band, based on ab initio molecular orbital density functional theory type calculations. It is not likely that both the bromide and chloride should have identical spectra. As explanation, the formation of 1,1-dimethylcyanamide gas is proposed, by decomposition of [tmgH]X leaving dimethylammonium halogenide (X = Cl, Br). The Raman spectra of all gas phases were quite identical and fitted the calculated spectrum of dimethylcyanamide. It is concluded that monomeric ion pair "molecules" held together by single N-H(+)···X(-) hydrogen bonds probably do not exist in the vapor phase over the solids at about 200-230 °C.  相似文献   

14.
In this work, the experimental and theoretical spectra of 3-chloro-4-fluoro benzonitrile (3C4FBN) were studied. The Fourier transform infrared and Fourier transform Raman spectra of 3C4FBN were recorded in the solid phase. The optimized geometry was calculated by HF and B3LYP methods with 6-311++G(d,p) basis set. The harmonic-vibrational frequencies, infrared intensities and Raman scattering activities of the title compound were performed at and HF/B3LYP/6-311++G(d,p) level of theories. The scaled theoretical wave number showed very good agreement with the experimental values. The thermodynamic functions of the title compound was also performed at HF/6-31G(d,p) and B3LYP/6-311++G(d,p) level of theories. A detailed interpretation of the infrared and Raman spectra of 3C4FBN was reported. The theoretical spectrograms for FT-IR and FT-Raman spectra of the title molecule have been constructed.  相似文献   

15.
Raman spectra were measured for Langmuir-Blodgett (LB) films of C(16)NaphOH and C(10)AzoNaphC(4)N-SDS on Calcium Fluorite substrate for the first time. In order to find out favorable excitation condition, Raman spectra of the single and multi-monolayer LB films excited at different lines at 244, 514, 633 and 778 nm are recorded and compared in the present study. Raman spectrum of the monolayer LB film of C(16)NaphOH excited by 244 nm demonstrate that excellent signal to noise is achieved even for one monolayer LB film with an extremely short integrating time as 60 s because of being resonantly enhanced, while no meaningful spectra were recorded under the same condition for the monolayer LB film of C(10)AzoNaphC(4)N-SDS because of burning. Using a HeNe 633 nm excitation the problem with strong substrate fluorescence was partially solved, since under these conditions this fluorescence is mainly outside the fingerprint region of the LB film molecules (1000-2000 cm(-1)). Therefore by using the HeNe laser excitation, Raman spectra with high signal to noise ratio of LB films of C(16)NaphOH were collected and shown in this paper. These findings stress again the necessity to define an appropriate Raman system for this special application of LB film diagnosis.  相似文献   

16.
In this paper, the vibrational spectra of copper sulfate hydrates (CuSO(4)·xH(2)O, x = 5, 3, 1, 0) have been investigated with low-temperature Raman spectroscopy and terahertz time domain spectroscopy (THz-TDS). It is found that the four groups of Raman bands between 90 and 4000 cm(-1) can be assigned to lattice vibration as well as intramolecular vibrations of a copper complex, sulfate group, and water molecules. The variation of vibrational spectra during the dehydrated process are discussed in detail considering the transformation of the crystal structure, especially the bands between 3000 and 3500 cm(-1), which are attributed to the ν(1) and ν(3) modes of water molecules. In addition, as a complement of Raman spectra, the THz spectra at 0.1-3 THz indicate the absorption due to the low-frequency lattice vibration and hydrogen bond.  相似文献   

17.
18.
This work represents the Raman spectra of 15 natural artists' materials that were obtained from local market in Mexico. Some of these products are not endemic to the region, but are often used in local conservation practice. Other materials are of local origin and have been used for centuries by local craftsmen. The Raman spectra that are reported here are: Chia oil, linseed oil, Campeche wax, beeswax, white copal, dammar, colophony, mastic, pixoy, chapopote, chucum, aje gum, gutta gum, peach gum and gum Arabic. The sample of pixoy was mixed with TiO(2), although it was not clear whether this was done intentionally or not. The Raman spectrum of chapopote, the local name for bitumen, contained features of carbonaceous and terpenoid matter. The Raman spectra of chapopote and chucum suffered severely from fluorescence, resulting in noisy Raman spectra. Aje gum and gutta gum are not gums, since they are resinous (terpenoid) in nature. Aje is a rare animal resin originating from Coccus axin.  相似文献   

19.
20.
纳米CaCO3负载过渡金属CVD法制备多壁碳纳米管的研究   总被引:1,自引:0,他引:1  
以纳米碳酸钙粉体为载体,用浸渍法制备了可用于化学气相沉积(CVD)法制备碳纳米管的高产率催化剂.应用FESEM,HRTEM,TEM,XRD和激光拉曼谱对产物进行了表征.结果表明,由于纳米碳酸钙具有较大的比表面积,可高密度地承载催化剂活性组分.在碳纳米管生长初期,处于缓慢分解状态的纳米碳酸钙才能有效地起到载体作用,且反应温度为700~750℃时,碳纳米管的产率较高.Fe-Co双金属催化剂在700℃,催化生长60min后,可增重10倍,而且产物中无定形碳含量极少.纳米碳酸钙载体易于提纯,用质量分数为30%的硝酸超声提纯粗产品1h,可使纯度提高到97%,且不破坏碳纳米管结构.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号