首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2-(5-H/Me/Cl-1H-benzimidazol-2-yl)-phenol ligands form 1:1 electrolytes, 5-coordinate monometallic complexes with iron(III) nitrate. The geometry of the [Fe(L)(OH)(H2O)2](NO3) complexes was derived from theoretical calculation in DGauss/DFT level (DZVP basis set) on CACHE. In all of the complexes the ligands are bidentate, via one imine nitrogen atom and phenolate oxygen atom. The coordination is completed with a hydroxide ion, and two water molecules, adopting a distorted square pyramidal geometry. The structures of the compounds were confirmed on the basis of elemental analysis, molar conductivity, magnetic moment, FT-Raman, FT-IR (mid-IR, far-IR), EPR and u.v.–vis. The antimicrobial activities of the free ligands, their hydrochloride salts, and the complexes were evaluated using the disk diffusion method in dimethyl sulfoxide (DMSO) as well as the minimal inhibitory concentration (MIC) dilution method, against nine bacteria and the results are compared with several known antibiotic agents. Antifungal activities were reported for Candida albicans, Kluyveromyces fragilis, Rhodotorula rubra, Debaryomyces hansenii, Hanseniaspora guilliermondii, and the results were referenced against nystatin, ketaconazole, and clotrimazole antifungal agents. In most cases, the compounds tested showed broad-spectrum (Gram+ & Gram bacteria) activities that were either more active or as potent as the references.  相似文献   

2.
2-(5-H/methyl-1H-benzimidazol-2-yl)-4-bromo/nitro-phenol (HLx:X=1–4) ligands and their iron(III) nitrate complexes have been synthesized and characterized. In all of the complexes, the ligands are bidentate, via one imine nitrogen atom and a phenolate oxygen atom. The coordination is completed with a bidentate nitrate anion, and a water molecule. Elemental analysis, molar conductivity, magnetic susceptibility, FT-Raman, FT-IR (mid i.r., far i.r.), UV–visible and as well as quantum chemical calculations performed with CACHE are in agreement with a 1:1 electrolyte structures that are mononuclear, and distorted 5-coordinate square pyramidal. The antimicrobial activities of free ligands, their hydrochloride salts and the complexes were evaluated using the disk diffusion method in dimethyl sulfoxide (DMSO) toward nine bacteria, each with multiple, fresh clinical isolates, and the results are compared with those for penicillin-g, ampicillin, cefotaxime, vancomycine, oflaxacin and tetracycline. Antifungal activities were reported for Kluyveromyces fragilis, Rhodotorula rubra, Candida albicans, Hanseniaspora Guilliermondii and Debaryomyces hansenii yeasts, each with multiple isolates, and the results were referenced against nystatin, ketaconazole and clotrimazole antifungal agents. In most cases, the compounds tested showed broad-spectrum (Gram+ and Gram) activities that were either more active or as potent as the references particularly as antifungal agents.  相似文献   

3.
Series of new mixed aza-oxo-thia macrocyclic ligands {2,6,12,16-tetraaza-1,7,11,17-tetraoxo-9,19-dithia-[(4′-methyl-5′,4,3′)(14′-methyl-15′,14,13′)]ditriazine}cyclocosane (L 1 ); {2,6,13,17-teraaza-1,7,12,18-tetraoxo-9,10,20,21-tetrathia-[(4′-methyl-5′,4,3′)(15′-methyl-14′,16′,15)]di-triazine}cyclodocosane (L 2 ); {2,6,14,18-tetraaza-1,7,13,19-tetraoxo-10,22-dithia-[(4′-methyl-5′,3′,4)(16′-methyl-15′,17′,16)]ditriazine}cyclotetracosane (L 3 ) and {2,6,15,19-tetraaza-1,7,14,12-tetraoxo-10,11,23,24-tetrathia-[(4′-methyl-5′,4,3′)(17′-methyl-8′,17,16′)]ditriazine}cyclohexa-cosane (L 4 ) were synthesized. The structural features of the compounds have been studied by elemental analyses, Mass, FT-Raman, FT-IR, 1H and 13C NMR spectroscopy. The antimicrobial activities of the ligands were evaluated using disk diffusion method in dimethyl sulfoxide as well as the minimal inhibitory concentration (MIC) dilution method, against 9 bacteria. The obtained results from disk diffusion method were assessed in side-by-side comparison with those of Penicillin-g, Ampicillin, Cefotaxime, Vancomycin, Oflaxacin, and Tetracyclin, well-known antibacterial agents. The results from dilution procedure were compared with Gentamycin as antibacterial and Nystatin as antifungal. The antifungal activities are reported on five yeast cultures namely Candida albicans, Kluyveromyces fragilis, Rhodotorula rubra, Debaryomyces hansenii, and Hanseniaspora guilliermondii, and the results are referenced with Nystatin, Ketaconazole, and Clotrimazole, commercial antifungal agents. In most cases, the compounds show strong antifungal activity in the comparison tests.  相似文献   

4.
 The synthesis and characterization of homobimetallic complexes of VO(IV), Cr(II), Co(II), Ni(II), and Cu(II) with the chiral Schiff base (1S,2S)-N,N-1,2-Diphenylethylene-bis-(5-imino-1-phenyl-1,3-hexa-nedione) is reported. The metal ions occupy both compartments of the ligand; water molecules fill the coordination spheres to provide an octahedral environment around the central atoms. The antibacterial activity of both mono- and bimetallic complexes against a number of Gram-positive as well as Gram-negative bacteria has been tested and is discussed.  相似文献   

5.
Summary.  The synthesis and characterization of homobimetallic complexes of VO(IV), Cr(II), Co(II), Ni(II), and Cu(II) with the chiral Schiff base (1S,2S)-N,N-1,2-Diphenylethylene-bis-(5-imino-1-phenyl-1,3-hexa-nedione) is reported. The metal ions occupy both compartments of the ligand; water molecules fill the coordination spheres to provide an octahedral environment around the central atoms. The antibacterial activity of both mono- and bimetallic complexes against a number of Gram-positive as well as Gram-negative bacteria has been tested and is discussed. Received March 28, 2000. Accepted May 26, 2000  相似文献   

6.
Metal complexes [Ni(HL1)2H2O] (1) and [Fe(HL1)2] (2), where HL1 is the tridentate Schiff base N-(2-hydroxyethyl)-5-nitrosalicylaldimine, were synthesized and characterized by spectroscopic methods. The crystal structures of 1 and 2 have been determined by single crystal diffraction at 100?K. Complexes 1 and 2 have a distorted octahedral geometry. The ligand and metal complexes were screened for antibacterial and antifungal activities by the disk diffusion, microdilution broth, and single spore culture techniques. Antimicrobial activities of the ligand and its complexes have been tested against 10 bacteria, two yeast, and five filamentous fungi. The ligand and metal complexes were found to be active against all tested micro-organisms.  相似文献   

7.
Herein, we report the synthesis of eight new mononuclear and binuclear Co2+, Ni2+, Cu2+, and Zn2+ methoxy thiosemicarbazone (MTSC) complexes aiming at obtaining thiosemicarbazone complex with potent biological activity. The structure of the MTSC ligand and its metal complexes was fully characterized by elemental analysis, spectroscopic techniques (NMR, FTIR, UV-Vis), molar conductivity, thermogravimetric analysis (TG), and thermal differential analysis (DrTGA). The spectral and analytical data revealed that the obtained thiosemicarbazone-metal complexes have octahedral geometry around the metal center, except for the Zn2+-thiosemicarbazone complexes, which showed a tetrahedral geometry. The antibacterial and antifungal activities of the MTSC ligand and its (Co2+, Ni2+, Cu2+, and Zn2+) metal complexes were also investigated. Interestingly, the antibacterial activity of MTSC- metal complexes against examined bacteria was higher than that of the MTSC alone, which indicates that metal complexation improved the antibacterial activity of the parent ligand. Among different metal complexes, the MTSC- mono- and binuclear Cu2+ complexes showed significant antibacterial activity against Bacillus subtilis and Proteus vulgaris, better than that of the standard gentamycin drug. The in silico molecular docking study has revealed that the MTSC ligand could be a potential inhibitor for the oxidoreductase protein.  相似文献   

8.
. Five neutral mixed‐ligand mononuclear square‐pyramidal copper(II) complexes of the type [Cu(cpf)(Ln)Cl] (cpf = ciprofloxacin and Ln = phenanthroline derivatives) ( 1 – 5 ) were synthesized and characterized. The complexes were screened for their antibacterial activity and bactericidal activity against two Gram(+ve) and three Gram(–ve) microorganisms and the results showed that all complexes studied are more potent than the quinolone standard drug ciprofloxacin. Absorption titration, viscosity, and thermal denaturation measurement studies revealed that each of these square‐pyramidal complexes moderately interacts with calf thymus DNA. The binding constants for mixed ligand complexes are in order of 1.5 × 104–3.0 × 104 M–1. Based on the data obtained in the DNA binding studies an intercalative mode of binding is suggested for these complexes. The nucleolytic cleavage activity of adducts and gyrase inhibition assay were studied on double stranded pUC19 DNA by gel electrophoresis experiments. From the SOD mimic study; the concentration of complexes ranging from 0.45 μM to 1.45 μM are enough to inhibit the reduction rate of NBT by 50 % (IC50) in NADH/PMS system.  相似文献   

9.
Tridentate chelate complexes of Co(II), Ni(II), and Cu(II) have been synthesized from 4-[N,N-bis-(3,5-dimethyl-pyrazolyl-1-methyl)]aminoantipyrine. Microanalytical data, UV-Vis, magnetic susceptibility, Infrared, 1H- 13C-NMR, mass, thermal gravimetric analysis and electron paramagnetic resonance (EPR) techniques were used to confirm the structures. The electronic absorption spectra and magnetic susceptibility measurements suggest a distorted octahedral geometry for the metal. EPR spectra of the copper(II) complex at 77?K confirm the distorted octahedral geometry of the copper(II) complex. The antimicrobial activities of the ligand and metal complexes against the bacteria such as Xanthomonas maltophilia, Chromobacterium violaceum, Acinetobacter, Staphylococci, Streptococci, and the fungus Candida albicans have been carried out. A comparative study of minimum inhibitory concentration values of the ligand and its metal complexes indicates that metal complexes exhibit higher antibacterial and antifungal activity than the free ligand. The electrochemical behavior of copper(II) complex was studied by cyclic voltammetry. The complexes show nuclease activity in the presence of oxidant.  相似文献   

10.
N,N′-bis(salicylidene)thiosemicarbazide Schiff base has been synthesized by the reaction of thiosemicarbazide with salicylaldehyde and then reacted with formaldehyde to generate phenolic groups, resulting in the formation of Schiff-base monomeric ligand. It was further incorporated with transition metals, Mn+2, Co+2, Ni+2, Cu+2, and Zn+2, to form Schiff-base metal complex, which was then polymerized with toluene 2,4-diisocyanate to form metal-chelated polyurethanes. Monomeric ligand, its metal complexes, and its metal polychelates were characterized and compared by elemental analysis, FT-IR, 1H NMR, thermal, and biocidal activities to evaluate the enhancement in physical and chemical properties on coordination with metal and on polymerization. SEM images of ligand and polymer metal complexes showed changes in surface morphology, while electronic spectra of polymer metal complexes were used to predict the geometry. Antimicrobial activities were determined by using agar-diffusion method with Staphylococcus aureus, Escherichia coli, Bacillus subtilis (bacteria), Aspergillus niger, Candida albicans, and Aspergillus flavus (yeast). The polymeric ligand had varied antibacterial and antifungal activities, enhanced after chelation and polymerization. Comparative results show that coordination of metal to the ligand enhances its physical and chemical properties which were meliorated on polymerization.  相似文献   

11.
A brief account of the synthesis, spectroscopic characterization and the antimicrobial (bacterial and fungal) behaviour of bis(diorganodithiocarbamato)organodithiocarbonatobismuth(III) complexes is presented. The reaction of bis(diorganodithiocarbamato)bismuth(III) chloride with potassium organodithiocarbonate in equimolar ratio yielded the corresponding mixed derivatives of the type [R′2NCS2]2BiS2COR [where, R′ = CH3 and C2H5; R = Et, Prn, Pri, Bun and Bui]. These have been characterized by molecular weight determinations, melting points (only solid complexes) and elemental (C, H, N, S and Bi) analysis as well as spectral IR and NMR [1H and 13C] studies. The antibacterial and antifungal activities of the free ligands and their bismuth complexes were found in vitro by the disc diffusion method. The complexes showed good antibacterial and antifungal effect on some selected bacterial and fungal strains. The antimicrobial activities of two standard antibiotics (Chloroamphenicol and Terbinafin) were also measured and compared with these complexes. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
A new series of cobalt(II) and nickel(II) complexes, [M(ligand)(H2O)2(Y)] (M = Co(II) or Ni(II); Y = Cl?, Br? or NO3 ?), containing the Schiff-base semicarbazone and thiosemicarbazone, HL1 and HL2, formed from 4-hydroxycoumarin-3-carbaldehyde have been synthesized. The nature of bonding and the stereochemistry of the complexes have been deduced from elemental analyses, infrared, electronic spectra, magnetic susceptibility, and conductivity measurements. An octahedral geometry has been suggested for the complexes. The metal complexes were screened for their antifungal and antibacterial activities on different species of pathogenic fungi and bacteria and their biopotency has been discussed.  相似文献   

13.
A novel vic-dioxime ligand containing the thiourea group, (4E,5E)-1,3-bis{4-[(4-methylphenylamino)methyl] phenyl}- 2-thiooxaimidazoline-4,5-dione dioxime, (4) mmdH2 has been prepared from N,N′-bis{4-[(4-methylphenylamino)methyl]phenyl}thiourea, (3) mft and cyanogen di-N-oxide. Mononuclear [M(mmdH)2], where M = NiII, CoII and CuII complexes of the (4) mmdH2 bidentate ligand have been obtained with a 1:2 metal:ligand ratio, as do most the vic-dioximes. The complexes are formed by coordination of N, N atoms of the ligand. The vic-dioxime ligand and its some transition metal complexes have been characterized by elemental analyses, molar conductance data, magnetic susceptibility, i.r., 1H-n.m.r and u.v.–vis. spectroscopy. Conductivity measurements have shown that mononuclear complexes are non-electrolytes. In addition, the ligands and metal complexes were screened for antibacterial and antifungal activities by agar well diffusion techniques using DMF as solvent.  相似文献   

14.
Three new metal complexes of 4,6-bis(4-chlorophenyl)-2-amino-1,2-dihydropyridine-3-carbinitrile (L) with Co(II), Ni(II) and Cu(II) were synthesized and characterized with physicochemical and spectroscopic techniques. The data suggest that (L) acts as a bidentate ligand bound to the divalent metal ions through amino N and carbinitrile N atoms having [M(L)2(H2O)2]2+ formula (M = metal ions). The theoretical parameters, model structures, charges and molecular orbitals of all possible complexes have been determined using density functional theory. The energy gap of free ligand is ?E = 0.12565 eV, and this value is greater than energy gap of complexes, which indicates that the complexes are more reactive than free ligand. Also, ?E of Co(II) complex is lower than other complexes, which indicates that Co(II) complex is more reactive than Ni(II) and Cu(II) complexes. The antibacterial and antifungal activities of the ligand, metal salts and its complexes were tested against some microorganisms (bacteria and fungi). The complexes showed increased antibacterial and antifungal profile in comparison with the free ligand.  相似文献   

15.
A novel bi‐nucleating Schiff base ligand, 6,6′‐(((1E,1′E)‐thiophene‐2,5‐diylbis (methaneylylidene))bis (azaneylylidene))bis (3,4‐dimethylaniline), and five binuclear M (II) complexes were synthesized. The bi‐nucleating Schiff base ligand and its metal complexes were characterized using various physicochemical techniques, e.g. elemental analyses, spectroscopic methods, conductivity and magnetic moment measurements. The low molar conductance of the complexes in dimethylsulfoxide shows their non‐electrolytic nature. The antibacterial activities were screened against pathogenic bacteria (Staphylococcus aureus, Escherichia coli, Pseudomonas putida and Bacillus subtilis). The antifungal activity was screened against Aspergillus niger, Aspergillus flavus and Rhizoctonia bataicola. The antimicrobial activity data showed that the metal complexes are more potent than the parent Schiff base ligand against microorganisms. The antioxidant activities of the synthesized compounds were investigated through scavenging activity against 2,2‐diphenyl‐2‐picrylhydrazyl, superoxide anion, hydroxyl and 2,2′‐ azinobis (3‐ethylbenzothiazoline‐6‐sulfonic acid) radicals. The complexes have superior radical scavenging activity than the free ligand and the scavenging effects of the Cu (II) complex are stronger than those of the other complexes. DNA binding studies were performed using electronic spectroscopy, fluorometric competition studies and viscosity measurements. The data indicated that there is a marked enhancement in biocidal activity of the ligand under similar experimental conditions because of coordination with metal ions.  相似文献   

16.
Nickel(II) complexes of type [Ni(L)2Cl2] and [Ni(L)2(OCOCH3)2], where L = (cyclohexyl-N-thio)-1,2-ethylenediamine (L1) and (cyclohexyl-N-thio)-1,3-propanediamine (L2) has been synthesized and characterized by elemental analysis, FT-IR, mass, UV-Vis, and 1H NMR spectroscopic studies. The thiodiamines coordinate as a bidentate N-S ligand. The ratio of the metal: ligand was 1: 2 for all the complexes. The binding sites are the azomethine nitrogen and thioamide sulfur. The complexes are found to be soluble in acetone, dimethylformamide, and dimethylsulfoxide. All the complexes were found amorphous in nature. Molar conductance values in DMSO indicate the nonelectrolyte nature of the complexes. In vitro antifungal and in vitro antibacterial studies were performed against fungal and bacterial strains, Aspergillus fumigatus, Aspergillus flavus, and Aspergillus niger, and Staphylococcus epidermidis, Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa, respectively. Preliminary antimicrobial screening shows the good results against both the fungal and the bacterial strains, which can lead through the investigation of better drug. The article is published in the original.  相似文献   

17.
Mono- and binuclear VO(IV), Ce(III), Th(IV) and UO2(VI) complexes of thiosemicarbazone, semicarbazone and thiocarbohydrazone ligands derived from 4,6-diacetylresorcinol were synthesized. The structures of these complexes were elucidated by elemental analyses, IR, UV–vis, ESR, 1H NMR and mass spectra as well as conductivity and magnetic susceptibility measurements and thermal analyses. The thiosemicarbazone (H4L1) and the semicarbazone (H4L2) ligands behave as dibasic pentadentate ligands in case of VO(IV) and UO2(VI) complexes, tribasic pentadentate in case of Ce(III) complexes and monobasic pentadentate in case of Th(IV) complexes. However, the thiocarbohydrazone ligand (H3L3) acts as a monobasic tridentate ligand in all complexes except the VO(IV) complex in which it acts as a dibasic tridentate ligand. The antibacterial and antifungal activities were also tested against Rhizobium bacteria and Fusarium-Oxysporium fungus. The metal complexes of H4L1 ligand showed a higher antibacterial effect than the free ligand while the other ligands (H4L2 and H3L3) showed a higher effect than their metal complexes. The antifungal effect of all metal complexes is lower than the free ligands.  相似文献   

18.
Two copper(II) complexes, [Cu(L)2](ClO4)2] and [Cu(L)(bipy)](ClO4)2, were prepared and characterized by the spectroscopic and analytic methods, where L is N-butylbenzimidazole and bipy is 2,2′-bipyridine. Single crystals of [Cu(L)(bipy)](ClO4)2 suitable for X-ray diffraction study were obtained by slow diffusion of diethyl ether into a DMF solution of the complex and the complex was found to crystallize as [Cu(L)(bipy)](ClO4)2·DMF. The asymmetric unit contains one [Cu(L)(bipy)]2+, two uncoordinated perchlorates, and one DMF solvate. Coordination geometry around Cu(II) is distorted square pyramidal with τ value of 0.31. Thermal properties of the complexes were examined by thermogravimetric analysis, indicating that the complexes are thermally stable to 310?°C. The metal complexes were screened for their in vitro antibacterial and antifungal activities Bacillus subtilis and Bacillus cereus (as Gram(+) bacteria), Escherichia coli, Enterobacter aerogenes, and Klebsiella pneumoniae (as Gram(–) bacteria), and Saccharomyces cerevisiae, Candida utilis, and Candida albicans (as yeasts). The complexes show antibacterial and antifungal activities against bacteria and yeasts.  相似文献   

19.
A series of Co(II), Ni(II), and Cu(II) complexes ML?·?3H2O have been synthesized with Schiff bases derived from 3-substituted-4-amino-5-mercapto-1,2,4-triazole and 5-formyl-6-hydroxy coumarin. The complexes are insoluble in common organic solvents but soluble in DMF and DMSO. The measured molar conductance values in DMF indicate that the complexes are non-electrolytes. In view of analytical, spectral (infrared, UV-Vis, ESR, TG, and FAB-mass), and magnetic studies, it has been concluded that all the metal complexes possess octahedral geometry in which ligand is coordinated to metal through azomethine nitrogen, phenolic oxygen, and sulfur via deprotonation. The Schiff bases and their complexes have been screened for antibacterial (Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and Salmonella typhi) and antifungal activities (Aspergillus niger, Aspergillus flavus, and Cladosporium) by the minimum inhibitory concentration method. DNA cleavage is studied by agarose gel electrophoresis.  相似文献   

20.
Some new coordination compounds of cadmium(II) and mercury(II) with N,N-bis[(E)-3-(phenylprop)-2-enylidene]propanediamine (L) as a new bidentate Schiff base ligand with general formula MLX2 (X = Cl?, Br?, I?, SCN?, and N3 ?) have been prepared. They were characterized by elemental analysis, FT-infrared (FT-IR) and Ultraviolet–Visible spectra, 1H- and 13C-NMR spectra. The reasonable shifts of FT-IR and NMR spectral signals of the complexes with respect to the free ligand confirm well coordination of ligand and anions(X-) in inner sphere coordination mode. The thermal behavior of the complexes from room temperature to 800 °C shows weight loss by decomposition of the anions and ligand segments in the subsequent steps. The results showed that cadmium complexes have no water molecules (neither as lattice nor as coordinated water) and are decomposed in two temperature steps except about cadmium thiocyanate complex that is decomposed in three steps. Final residual contents of cadmium complexes are suggested to be cadmium oxide or sulfide. Mercury complexes were decomposed in three to four temperature steps. Mercury bromide and azide complexes leave out a little amount of mercury oxide in final, while mercury chloride, iodide, and thiocyanate complexes were found to be completely decomposed without any residual matter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号