首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.

Abstract  

It is known that for a square cylinder subjected to uniform flow, the drag force changes with the angle of attack. To clarify the flow characteristics around a square cylinder with corner cutoffs, we measured the drag coefficient and the Strouhal number for changing chamfer dimensions. We analyzed the flow around a square cylinder with corner cutoffs by applying the RNG kε turbulent model, and investigated the surface flow pattern using visualization by means of the oil film and mist flow method. From these results, we obtained the surface flow patterns by the oil film method and numerical analysis. The numerical results agreed well with the experimental values. The drag coefficient of the square cylinder with corner cutoffs decreased suddenly at an angle of attack of about α = 0°– 10° when compared with the drag coefficient for a square cylinder. The minimum value of the drag coefficient for the square cylinder with corner cutoffs decreased by about 30% compared with that for the square cylinder. The drag coefficient of the square cylinder with 10% corner cutoffs was found to be smallest, since the wake area of this square cylinder was smaller compared with that of the other square cylinder.  相似文献   

2.
In the flow around a circular cylinder, a sudden decrease in the drag force occurs at a high Reynolds number, but the same phenomenon occurs at a lower Reynolds number in the case where there exist grooves or roughness on the circular cylinder surface. In this paper, in order to make clear the flow characteristics around a circular cylinder in the case of changing the shapes of grooves, the drag coefficient, pressure distribution, velocity distribution and turbulent distribution were measured. Moreover the flow around the cylinder was analyzed by applying the RNGk · ∈ turbulent model, and the surface flow pattern was investigated using the oil-film technique. From these results, it is clear that the drag coefficient of a circular cylinder with triangular grooves decreases by about 15% compared with that of a circular cylinder with arc grooves.  相似文献   

3.
The heat transfer and air flow around an unconfined heated rotating circular cylinder is investigated numerically for varying rotation rates (α = 0–6) in the Reynolds number range of 20–200. The numerical calculations are carried out by using a finite volume method based commercial computational fluid dynamics solver FLUENT. The successive changes in the flow pattern are studied as a function of the rotation rate. Suppression of vortex shedding occurs as the rotation rate increases (α > 2). A second kind of instability appears for higher rotation speed where a series of counter-clockwise vortices is shed in the upper shear layer. The rotation attenuates the secondary instability and increases the critical Reynolds number for the appearance of this instability. Besides, time-averaged (lift and drag coefficients and Nusselt number) results are obtained and compared with the literature data. A good agreement has been obtained for both the local and averaged values.  相似文献   

4.
In the flow around a circular cylinder, a sudden decrease in the mean drag coefficient occurs at a high Reynolds number, but the same phenomenon occurs at a lower Reynolds number in the case where there exist grooves or roughness on the cylinder surface. In this paper, in order to make clear the flow characteristics around a cylinder with 20, 26 and 32 triangular grooves, the mean drag coefficient, pressure distribution, velocity distribution and turbulence intensity distribution were measured. Moreover, the flow around the cylinder was analyzed by applying the RNGk − ɛ turbulent model, and the surface flow pattern was investigated using the oil-film technique. From these results, it was found that a sudden decrease in the mean drag coefficient of a cylinder with 32 triangular grooves occurs at a lower Reynolds number compared with 20 and 26 triangular grooves.  相似文献   

5.
6.
The radiation from a charge uniformly rotating about a conducting cylinder immersed into a homogeneous medium was studied. Expressions for electric and magnetic fields, as well as for the surface charge and currents induced by the initial charge on the cylinder surface were obtained. A formula is derived for spectral-angular distribution of the radiation intensity. The results of a numerical analysis are presented.  相似文献   

7.
The near wake of a varicose cylinder has been experimentally investigated using Laser Induced Fluorescence (LIF) and Digital Particle Imaging Velocimetry (DPIV). The work aims to provide understanding to the mechanism of the cross flow around varicose cylinder as well as to comprehend why the introduction of relatively small degrees of spanwise waviness can have a significant effect on drag reduction and suppression of the cylinder vibration. The evolution of the flow patterns and the corresponding vortex interactions are obtained. The experimental results indicated that the wake width and the formation length vary along the span of the varicose cylinder. A wider wake and a longer formation length were observed in the saddle plane. In addition, an interpretation of the three-dimensional wake structures is postulated and conceptually shown. The numerical simulation by 3-D finite volume method is successful in predicting the flow features found by the experiments.  相似文献   

8.
In a circular cylinder with uniform flow, a sudden decrease in the drag force occurs at a high Reynolds numbers; however, it is known that the same phenomenon occurs at a lower Reynolds number in the case where there exist grooves or roughness on the circular cylinder surface. To clarify the flow characteristics around a circular cylinder in the case of changing the shape of grooves we analyzed the drag coefficient, lift coefficient, turbulent kinetic energy, vorticity and pressure by applying the RNGk-ε turbulent model. The shapes of the grooves were arced, triangulated and curved. The results showed that the separation point for a circular cylinder with curved sectional grooves shifts to the most downstream side and the drag coefficient becomes the smallest among circular cylinders with grooves.  相似文献   

9.
10.
A study on the energy dissipation characteristics of granular materials flowing/sloshing in a rotating container is presented here. The objective is to develop a configuration for control of excessive structural oscillations, similar to those of tuned vibration absorbers and tuned sloshing absorbers. The effectiveness of energy dissipation through granular flow is primarily determined experimentally. A computational model is developed to understand the flow behavior and energy dissipation in this system. A promising kinematic match of the particle behavior is demonstrated between the numerical predictions and the experimental observations. The use of the granular flow in a rotating drum for vibration control is being investigated for the first time.  相似文献   

11.
Some results are presented of an investigation of the distribution of the mean static pressure around a circular cylinder fitted with various shrouds, for the subcritical and transition Reynolds number range. Those shrouds were chosen which suppress flow-induced vibrations and these seem to have a particular effect on the pressure distribution: namely, the flat part of the corresponding pressure coefficient curve versus the circumferential angle is reduced behind the cylinder.  相似文献   

12.
尹纪富  尤云祥  李巍  胡天群 《物理学报》2014,63(4):44701-044701
在亚临界区高雷诺数Re=1.4×105下,采用脱体涡模拟结合湍流分离的方法对弱电解质中电磁力作用下湍流边界层分离圆柱绕流场及其升(阻)力特性进行了数值模拟和分析.结果表明,电磁力可以提高圆柱体湍流边界层内的流体动能,延缓圆柱体湍流边界层的流动分离,减弱圆柱体湍流绕流场中在流向和展向上大尺度漩涡的强度,减小圆柱体阻力时均值及其升力脉动幅值.当电磁力作用参数大于某个临界值后,湍流边界层流动分离消失,在圆柱体尾部产生射流现象,从而电磁力对圆柱体产生净推力作用,出现负阻力现象,而且升力脉动幅值接近于零,出现圆柱体升力消失现象.  相似文献   

13.
The flow characteristics of the trailing edge of vertical vanes installed at the intersection of a T-junction duct were experimentally investigated using particle image velocimetry. The measured velocity field in the branch duct with/without single circular cylinder was studied under different cross velocities and velocity ratios. Additionally, the effect of the locations of cylinder on the flow field was discussed. The positive velocity region, the unsteady flow region and the trailing edge flow region of the vane, have been observed. The positive velocity region existed in almost one half of the measured area. As for the unsteady flow region, the unstable double-vortex structure transformed into a single-vortex structure as the velocity ratio increased. As for the trailing edge flow region of the vanes, the vortex streets could be visualised. Furthermore, the location of cylinder has revealed significant influence on the flow distributions in the trailing edge flow regions of the vanes. The flow structure without cylinder in the measured area is dependent on combinations of the cross velocity and velocity ratio, whereas that with cylinder is dependent on the velocity ratio. The vorticity fields were analysed in each region, and the velocity components revealed the cause of airflow trajectory.  相似文献   

14.
Gas flow in a micro-channel usually has a high Knudsen number. The predominant predictive tool for such a microflow is the direct simulation Monte Carlo(DSMC) method, which is used in this paper to investigate primary flow properties of supersonic gas in a circular micro-channel for different inflow conditions, such as free stream at different altitudes, with different incoming Mach numbers, and with different angles of attack. Simulation results indicate that the altitude and free stream incoming Mach number have a significant effect on the whole micro-channel flow field, whereas the angle of attack mainly affects the entrance part of micro-channel flow field. The fundamental mechanism behind the simulation results is also presented. With the increase of altitude, thr free stream would be partly prevented from entering into micro-channel.Meanwhile, the gas flow in micro-channel is decelerated, and the increase in the angle of attack also decelerates the gas flow. In contrast, gas flow in micro-channel is accelerated as free stream incoming Mach number increases. A noteworthy finding is that the rarefaction effects can become very dominant when the free stream incoming Mach number is low. In other words, a free stream with a larger incoming velocity is able to reduce the influence of the rarefaction effects on gas flow in the micro-channel.  相似文献   

15.
16.
戈阳祯  米建春 《物理学报》2013,62(2):24704-024704
本文通过实验研究雷诺数对加热圆柱尾流中温度场的影响.实验中雷诺数Re(≡U∞d/v,其中U∞为来流速度、d为圆柱直径、v为流体黏度)的取值范围为1200-8600.实验中温度是由直径为0.63 μm的冷线探针测量的.实验结果表明,一般而言,雷诺数对整个尾流的标量混合特性有着显著的影响.随着雷诺数的增加,平均标量场向外的扩散速度加快、标量脉动强度增加了但衰减也加快.本文还发现:尾流中似乎存在两个区域,一个位于卡门涡街下游靠后,另一个就是传统的远场自相似区;在这两个区域,某些描述标量和动量的相似关系式近似成立.  相似文献   

17.
18.
朱之墀  曾令忠 《声学学报》1992,17(3):187-199
本文从ψ-ω形式的不可压N-S方程出发,采用ADI-BGE格式及新的物面边界条件处理方法,并提出一种数值扰动模型,成功地计算了Re=100时圆柱绕流卡门涡街流动,得到的流场结果比原有数值解准确,与实验结果符合良好,因而可用来进行声场数值研究。在声场计算方面,直接积分Curle方程,对Re=100时的声源分布及其声辐射特性进行数值分析,并与涡声理论结果和流场中脉动力和脱体旋涡频谱进行比较,证明本文方法是成功的。  相似文献   

19.
The dynamic governing equations and the corresponding boundary conditions for a rotating thin laminated circular plate with a viscoelastic core layer are derived in this paper based on the Hamilton principle. The analysis on dynamic features of the forward and Backward Traveling Waves for the rotating laminated plate is performed by means of Galerkin's method. The frequency-dependent complex modulus model for describing the constitutive behavior of the viscoelastic core layer is employed. The dynamic characteristics of frequencies and dampings of traveling waves for the rotating plate are obtained numerically. The effects of geometrical and material parameters on the critical speed of the rotating laminated plate with viscoelastic core are discussed in detail.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号