首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thermoplastic fiber composites were prepared using high modulus lyocell (regenerated cellulose) fibers for reinforcement and cellulose acetate butyrate (CAB) as matrix. Choices were made with regard to fiber options (fabric versus continuous tow) and method of matrix deposition (prepregging by powder coating, film stacking, or solution impregnating). The results suggest that solution-prepregged fiber tow consolidated at circa 200°C produced unidirectional consolidated panels with tensile strength, modulus, and strain at failure values of approximately 250MPa,>20GPa and 3–4%, respectively, at fiber volume contents of approximately 60%. Modulus and ultimate tensile strength increased with fiber content, and modulus followed rule-of-mixture behavior. Adequate surface wetting and matrix-fiber adhesion were found with solution-prepregged composites. The unexpectedly low strain at failure (2 to <4%) was attributed to brittle matrix failure, and failure surfaces revealed that the fibers, for the most part, remained intact after the matrix had failed.  相似文献   

2.
We prepared thermoplastic composite panels using solution impregnation of continuous lyocell (regenerated cellulose) fibers with a cellulose mixed-ester (cellulose acetate butyrate) matrix. We examined both fiber-matrix adhesion and melt consolidation in an effort to produce uniform panels having low void content and high mechanical strength. We characterized the effect of surface modification by acetylation on interfacial adhesion between the cellulose fiber and cellulose ester. Whereas wood fiber acetylation had previously been observed to result in significant strength gains in (discontinuous) wood fiber- reinforced composites (with the same matrix material), we did not observe a similar increase in strength in the continuous lyocell cellulose fiber system. This suggests that interfacial stress transfer is not a limitation in this system. This was confirmed by microscopic examination of the fracture surfaces, which indicated that fiber-matrix adhesion was considerable in the absence of fiber surface modification. We then systematically varied melt consolidation conditions (temperature, pressure and time) in an attempt to define optimum consolidation parameters by using design of experiments (DOE) methodology. We measured both interlaminar shear strength (ILSS) and composite void volume. We found that a minimal void content (ca. 2.83 vol. %) occurred at moderate temperatures (200°C), low consolidation pressures (81.4kPa) and long press times (13min). This was also where we maximized the interlaminar shear strength (ILSS) at a value of 16.3MPa. This agrees with the regression model predictions. We observed the highest tensile properties at the ILSS and void-volume optimal-consolidation condition: a tensile modulus of 22GPa and tensile strength of 246MPa were obtained.  相似文献   

3.
Cellulose was dissolved rapidly in a NaOH/thiourea aqueous solution (9.5:4.5 in wt.-%) to prepare a transparent cellulose solution, which was employed, for the first time, to spin a new class of regenerated cellulose fibers by wet spinning. The structure and mechanical properties of the resulting cellulose fibers were characterized, and compared with those of commercially available viscose rayon, cuprammonium rayon and Lyocell fibers. The results from wide angle X-ray diffraction and CP/MAS 13C NMR indicated that the novel cellulose fibers have a structure typical for a family II cellulose and possessed relatively high degrees of crystallinity. Scanning electron microscopy (SEM) and optical microscopy images revealed that the cross-section of the fibers is circular, similar to natural silk. The new fibers have higher molecular weights and better mechanical properties than those of viscose rayon. This low-cost technology is simple, different from the polluting viscose process. The dissolution and regeneration of the cellulose in the NaOH/thiourea aqueous solutions were a physical process and a sol-gel transition rather than a chemical reaction, leading to the smoothness and luster of the fibers. This work provides a potential application in the field of functional fiber manufacturing.  相似文献   

4.
It has been shown that some surfactants affect the hydrolysis of cellulose by cellulase. In this study, the effect of the surfactant Tween 20 on the hydrolysis of different cellulosic fibers was investigated and related to the cellulose fiber structure. It was found that this non-ionic surfactant enhanced the enzymatic saccharification of highly crystalline cellulosics such as Avicel, Tencel and cotton but not of cuprammonium rayon. The enhanced saccha-rification effected by the surfactant is attributed to inhibition of non-productive sorption of the endoglucanase of the cellulose surface which gives greater access to the cellulose chain ends by the exoglucanase. Although all three fibers lost tensile strength as a result of the enzymatic treatment, no further decrease was effected by the presence of the surfactant.  相似文献   

5.
Differences in fiber structure between cotton and cuprammonium rayon are studied by a refined broad-line proton NMR analysis of samples swollen with deuterated dimethyl sulfoxide, which has no effect on the spectra but enhances differences in molecular mobility between crystalline and noncrystalline regions. The spectra obtained are decomposed into four components: broad, medium, narrow, and extremely narrow. These components are identified as contributions, respectively, from crystalline and rigid noncrystalline (frozen glassy) material, a noncrystalline glassy component exhibiting local segmental motion, a noncrystalline rubbery component exhibiting liquidlike molecular motion, and protons included in DMSO-d6 as an impurity. The mass fraction of the narrow component in cotton was about 0.01, whereas it was as high as 0.18 in cuprammonium rayon. It is concluded that even in the swollen state, native cellulose is devoid of a liquidlike mobile component, but regenerated cellulose contains a considerable amount of a noncrystalline component involving liquidlike segmental motion of molecules.  相似文献   

6.
Microfibrillated cellulose (MFC), which consists of a web‐like array of cellulose fibrils having a diameter in the range of 10–100 nm, was incorporated into a cellulose acetate (CA) matrix to form a totally biobased structural composite. Untreated and a 3‐aminopropyltriethoxysilane (APS) surface treated MFC was combined with a CA matrix by film casting from an acetone suspension. The effectiveness of the surface treatment was determined by infrared spectroscopy and X‐ray photoelectron spectroscopy. The Young's moduli of APS treated MFC composite films increase with increasing MFC content from 1.9 GPa for the CA to 4.1 GPa at 7.5 wt % of MFC, which is more than doubled. The tensile strength of the composite film increases to a maximum of 63.5 MPa at 2.5 wt % compared to the CA which has a value of 38 MPa. The thermal stability of composites with treated MFC is also better than the untreated MFC. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 153–161, 2010  相似文献   

7.
This work establishes that the plasticization effect of a classical petrochemical plasticizer, dimethyl phthalate (DMP), on a polymer matrix, cellulose acetate (CA), is due to the development of intermolecular interactions of dipolar type. Plasticized cellulose acetate films are studied with regard to the interactions between the polymer and plasticizer at the macroscopic scale by thermogravimetric analysis and differential scanning calorimetry. At the molecular level, Fourier transform infrared spectroscopy and dielectric relaxation spectroscopy are used to elucidate the nature of interactions that are responsible for the plasticizing effects. These static and dynamic complementary analyses evidenced that DMP does not establish H-bonding interactions with the polymer chains of cellulose acetate but rather weaker interactions of dipolar type. These dipole–dipole interactions that develop between acetyl side groups of CA and the ester phthalate moieties of DMP increase the overall mobility of CA chains and also locally influence the molecular mobility and the water uptake tendency.  相似文献   

8.
Composites of cellulose acetate and polysiloxane were prepared using 3-isocyanatepropyltriethoxysilane, as a coupling agent. The structure, the thermal and dynamic-mechanical behaviors, and the morphology of the obtained composites were investigated. The composites showed phase separation which was confirmed by the presence of siloxane micro- and nano-domains dispersed in the cellulose acetate matrix, with good interfacial adhesion between the phases. The results demonstrated that the incorporation of a polysiloxane phase on a cellulose acetate matrix caused a decrease in the glass transition temperature, storage modulus and hardness. The proposed methodology was seen to be convenient for the preparation of cellulose acetate/polysiloxane composites with useful properties.  相似文献   

9.
Free-radical formation in various modifications of celluloses, namely, wood cellulose I, II, III, and IV, rayon cellulose, amorphous cellulose, cotton linters, and absorbent cotton, irradiated with ultraviolet light, has been studied by means of ESR spectroscopy at 77°K. Various types of free radicals were generated from these samples. The line shapes and the signal intensities of the ESR spectra depended greatly upon the degree of crystallinity, the lattice type, and the arrangement of molecules in cellulose. The effect of degree of crystallinity and the amount of sensitizer (Fe3+) absorbed revealed that photochemical reactions in cellulose occurred exclusively in the amorphous regions of the polymer. Free radicals formed in these samples behaved distinctively upon a warm-up process. Phenomena of radical migration and formation of new radicals were observed from the sensitized samples of rayon cellulose and amorphous cellulose.  相似文献   

10.
Thermal behavior of mixtures composed of cellulose acetate butyrate (CAB), carboxymethylcellulose acetate butyrate (CMCAB), or cellulose acetate phthalate (CAPh), and sorbitan-based surfactants was investigated as a function of mixture composition by means of differential scanning calorimetry (DSC). Surfactants with three different alkyl chain lengths, namely, polyoxyethylenesorbitan monolaurate (Tween 20), polyoxyethylenesorbitan monopalmitate (Tween 40), and polyoxyethylene sorbitan monostearate (Tween 60) were chosen. DSC measurements revealed that Tween 20, 40, and 60 act as plasticizers for CAB, CMCAB, and CAPh (except for Tween 60), leading to a dramatic reduction of glass transition temperature (T g). The dependence of experimental T g values on the mixture composition was compared with theoretical predictions using the Fox equation. Plasticization was strongly dependent on mixture composition, surfactant hydrophobic chain length, and type of cellulose ester functional group.  相似文献   

11.
Regenerated cellulose fibers were successfully prepared through dissolving cotton linters in NaOH/thiourea/urea aqueous solution at ?2 °C by a twin-screw extruder and wet-spinning process at varying precipitation and drawing conditions. The dissolution process of an optimized 7 wt% cellulose was controlled by polarizing microscopy and resulted in a transparent and stable cellulose spinning dope. Rheological investigations showed a classical shear thinning behavior of the cellulose/NaOH/thiourea/urea solution and a good stability towards gelation. Moreover, the mechanical properties, microstructures and morphology of the regenerated cellulose fibers were studied extensively by single fiber tensile testing, X-ray diffraction, synchrotron X-ray investigations, birefringence measurements and field-emission scanning electron microscopy. Resulting fibers demonstrated a smooth surface and circular cross-section with homogeneous morphological structure as compared with commercial viscose rayon. At optimized jet stretch ratio, acidic coagulation composition and temperature, the structural features and tensile properties depend first of all on the drawing ratio. In particular the crystallinity and orientation of the novel fibers rise with increasing draw ratio up to a maximum followed by a reduction due to over-drawing and oriented crystallites disruption. The microvoids in the fiber as analysed with SAXS were smaller and more elongated with increasing drawing ratio. Moreover, a higher tensile strength (2.22 cN/dtex) was obtained in the regenerated fiber than that of the viscose rayon (2.13 cN/dtex), indicating higher crystallinity and orientation, as well as more elongated and orientated microvoid in the regenerated fiber. All in all, the novel extruder-based method is beneficial with regard to the dissolution temperature and a simplified production process. Taking into account the reasonable fiber properties from the lab-trials, the suggested dissolution and spinning route may offer some prospects as an alternative cellulose processing route.  相似文献   

12.
In the present study the effect of relative humidity (RH) during spin-coating process on the structural characteristics of cellulose acetate (CA), cellulose acetate phthalate (C-A-P), cellulose acetate butyrate (CAB) and carboxymethyl cellulose acetate butyrate (CMCAB) films was investigated by means of atomic force microscopy (AFM), ellipsometry and contact angle measurements. All polymer solutions were prepared in tetrahydrofuran (THF), which is a good solvent for all cellulose esters, and used for spin-coating at RH of (35 ± 5)%, (55 ± 5)% or (75 ± 5)%. The structural features were correlated with the molecular characteristics of each cellulose ester and with the balance between surface energies of water and THF and interface energy between water and THF. CA, CAB, CMCAB and C-A-P films spin-coated at RH of (55 ± 5)% were exposed to THF vapor during 3, 6, 9, 60 and 720 min. The structural changes on the cellulose esters films due to THF vapor exposition were monitored by means of AFM and ellipsometry. THF vapor enabled the mobility of cellulose esters chains, causing considerable changes in the film morphology. In the case of CA films, which are thermodynamically unstable, dewetting was observed after 6 min exposure to THF vapor. On the other hand, porous structures observed for C-A-P, CAB and CMCAB turned smooth and homogeneous after only 3 min exposure to THF vapor.  相似文献   

13.
In this work, four kinds of cellulose aliphatate esters, cellulose acetate (CA), cellulose propionate (CP), cellulose butyrate (CB) and cellulose acetate butyrate (CAB) are synthesized by the homogeneous acylation reactions in cellulose/AmimC1 solutions. These cellulose aliphatate esters are used to prepare gas separation membranes and the effects of molecular structure, such as substituent type, degree of substitution (DS) and distribution of substituents, on the gas permeability are studied. For CAs, as the DS increases, their gas permeabilities for all five gases (02, N2, CH4, CO and CO2) increase, and the ideal permselectivity significantly increases first and then slightly decreases. At similar DS value, the homogenously synthesized CA (distribution order of acetate substituent: C6 〉 C3 〉 C2) is superior to the heterogeneously synthesized CA (distribution order of acetate substituent: C3 〉 C2 〉 C6) in gas separation. With the increase of chain length of aliphatate substituents from acetate to propionate, and to butyrate, the gas permeability of cellulose aliphatate esters gradually increases. The cellulose mixed ester CAB with short acetate groups and relatively long butyrate groups exhibits higher gas permeability or better permselectivity than individual CA or CB via the alteration of the DS of two substituents.  相似文献   

14.
Spin-coated films of cellulose acetate (CA), cellulose acetate propionate (CAP), cellulose acetate butyrate (CAB) and carboxymethylcellulose acetate butyrate (CMCAB) have been characterized by ellipsometry, atomic force microscopy (AFM) and contact angle measurements. The films were spin-coated onto silicon wafers, a polar surface. Mean thickness values were determined by means of ellipsometry and AFM as a function of polymer concentration in solutions prepared either in acetone or in ethyl acetate (EA), both are good solvents for the cellulose esters. The results were discussed in the light of solvent evaporation rate and interaction energy between substrate and solvent. The effects of annealing and type of cellulose ester on film thickness, film morphology, surface roughness and surface wettability were also investigated. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.
In this work, periodate oxidized birch wood pulp and microfibrillated cellulose (MFC) were cationized using Girard’s reagent T or aminoguanidine. Cationic celluloses were used to obtain films via solvent-casting method, and the effects of the cationization route and the cellulose fiber source on the properties of the films were studied. Thermal and optical properties of the films were measured using differential scanning calorimetry and UV–Vis spectrometry, and the morphology of the films was examined using an optical microscope and a field emission scanning electron microscope. Bacterial anti-adhesive properties of the films were also studied using a modified leaf print method and against Staphylococcus aureus and Escherichia coli. Both cationizing agents exhibited similar reactivity with periodate oxidized celluloses, however, MFC had significantly higher reactivity compared to birch pulp. The films with high tensile strength (39.1–45.3 MPa) and modulus (3.5–7.3 GPa) were obtained from cationized birch pulp, aminoguanidine modification producing a film with slightly better mechanical properties. Modulus of the films was significantly increased (up to 14.0 GPa) when MFC was used as a cellulose fiber source. Compared to the unmodified MFC films, the cationic MFC films were less porous and significantly more transparent; however, they had slightly lower tensile strength values. It was found that aminoguanidine modified celluloses had no culturable bacteria on its surface and also exhibited resistance to microbial degradation, whereas there were culturable bacteria on the surface of Girard’s reagent modified films and they were partially degraded by the bacteria.  相似文献   

16.
Bacterial cellulose (BC) is a nanoscale and useful biomaterial with a fine fiber network and high water holding capacity. However, dried BC exhibits poor rehydration ability. The present study investigated the rehydration ability of composites of hydrolyzed gelatin peptides (HGP) and hydroxypropylmethyl cellulose-modified BC (HBC). The HGP with molecular weights <9 kDa were obtained by hydrolyzing gelatin with a combination of 1 % alcalase and 1.5 % pronase E at 50 °C for 2 h. The HGP/HBC nanocomposites exhibited higher rehydration ratios than composites prepared with gelatin. According to SEM images, gelatin and HGP successfully penetrated the cellulose network in composite films prepared using both immersion and adsorption (DA) methods. The high hydrophilic property of HGP resulted in a rehydration ratio of approximately 180 % at a HGP/HBC ratio of 4.5:1 (W/W) in DA composites. The 1 min rehydrated HGP/HBC composites possessed similar mechanical properties to the original wet type composites. Overall, results indicated that the HGP/HBC composites prepared using the DA method demonstrated the highest rehydration ability among the composite films evaluated.  相似文献   

17.
The photodegradation of cellulose acetate fibers by ultraviolet light in vacuo at 77°K and at ambient temperature was studied. Three kinds of light sources with different wavelengths between 2353 and 6000 Å were employed. ESR studies at 77°K show that several kinds of free radicals are produced from cellulose diacetate (CDA) and cellulose triacetate (CTA) fibers when irradiated with light of wavelength shorter than 2800 Å. Among these methyl radicals formed decayed within 210 min at 77°K. When the temperature was raised above 77°K, radical transformation occurred at 87°K and most of the free radicals decayed at 193°K, whereas the cellulosic radicals were stable at this and even at higher temperatures. Ultraviolet spectroscopy studies revealed that the main chromophores are the carbonyl function of the acetyl group and acetal groups in the polymer. The photodegradation of the polymers at ambient temperature resulted in the formation of gaseous products (mainly CO, CO2, and CH4), together with the loss of bound acetic acid content and sample weight. Decreases in viscosity and reduction of tensile strength and elongation were also observed in the irradiated samples, revealing that the overt effects of ultraviolet light on cellulose acetate fibers are interpreted in terms of free-radical reactions ultimately leading to main-chain and side-group scissions, unsaturation, and the formation of small molecule fragments. Among these, main-chain scission took place predominantly in CDA fiber and side-group scission in CTA fiber. The mechanism of the fundamental photochemical degradation processes of cellulose acetate fibers is elucidated.  相似文献   

18.
This paper describes an approach to manufacture hierarchical composites from environmentally friendly materials by grafting cellulose whiskers onto regenerated cellulose fibers (Cordenka 700). Fourier Transform Infrared spectroscopy, Scanning Electron Microscopy and X-ray diffraction analysis were performed to verify the degree of modification. The mechanical properties of the unmodified and modified fibers were analyzed using fiber bundle tensile static and loading–unloading tests. To show the effect of cellulose whiskers grafting on the Cordenka fibers, epoxy based composites were manufactured and tensile tests done on transverse uni-directional specimens. The mechanical properties were significantly increased by fiber modification and addition of the nano-phase into composite reinforced with micro-sized fibers.  相似文献   

19.
Cellulose acetate (degree of substitution 2.45) films containing diphenyliodonium salt and benzophenone were prepared and their degradative behavior was examined under simulated solar exposure. Acetic acid generation from the films under irradiation was greater in the co-presence of diphenyliodonium salt and benzophenone than in the sole presence of diphenyliodonium salt. Photosensitization and free-radical oxidization, which are followed by Brønsted acid generation, were postulated as the mechanism for the observed increase of deacetylation. The patterns of decreased molecular weight were different between the films with the diphenyliodonium salt and those with benzophenone; while the films with the diphenyliodonium salt kept a relatively constant molecular-weight distribution, the polydispersity increased in the films with benzophenone during the degradation. Since the synthesized characteristics of those two different patterns of change in molecular-weight distribution were observed in the co-presence of the diphenyliodonium salt and benzophenone, each additive appeared to act independently to lead to main-chain cleavage of cellulose acetate. Therefore, decrease in the molecular weight of cellulose acetate by diphenyliodonium salt did not seem to be enhanced in the co-presence with benzophenone.  相似文献   

20.
Sisal nanowhiskers were used as novel reinforcement to obtain nanocomposites with polyvinyl acetate (PVAc) as matrix phase. They are seen as attractive materials due to the widespread availability and low cost of the sisal source material. Statistical analysis of the sisal whisker length and diameter resulted in average values of 250 nm and 4 nm, respectively, resulting in an average aspect ratio in the upper range of reported cellulose nanowhisker values. The high aspect ratio ensures percolation, with resulting mechanical improvements and thermal stability, at lower fiber loads. Water uptake and thermal behaviour of the sisal whisker–PAVc composites were studied. Whisker addition was found to stabilize the nanocomposites with no benefit seen when increasing the whisker content beyond the percolation threshold: For all whisker contents studied above percolation, the water uptake stays constant, and the Tg does not vary with whisker content at a given relative humidity. The water diffusion rate however increases due to water accumulation at the whisker–PVAc interface. Below whisker percolation, stabilization is only noticed at low relative humidity, whereas high humidity results in disruption of whisker–PVAc interactions. This work shows the potential of cellulose nanowhiskers to stabilize polar polymers even at high humidity conditions with minimal reinforcement addition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号