首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The reactions of NO and/or NO2- with three water-soluble cobalt porphyrins [Co(III)(P)(H2O)2]n, where P = TPPS, TCPP, and TMPyP, were studied in detail. At pH < 3, the reaction with NO proceeds through a single reaction step. From the kinetic data and activation parameters, the [Co(III)(P)(NO)(H2O)]n complex is proposed to be the primary product of the reaction with NO. This complex reacts further with a second NO molecule through an inner-sphere electron-transfer reaction to generate the final product, [Co(III)(P)(NO-)](n-1). At pH > 3, although a single reaction step is also observed, a systematic study as a function of the NO and NO2- concentrations revealed that two reaction steps are operative. In the first, NO2- and NO compete to substitute coordinated water in [Co(III)(P)(H2O)2]n to yield [Co(III)(P)(NO)(H2O)]n and [Co(III)(P)(NO2-)(H2O)](n-1) as the primary reaction products. Only the nitrite complex could be detected and no final product formation was observed during the reaction. It is proposed that [Co(III)(P)(NO)(H2O)]n rapidly reacts with NO2- to form the nitrite complex, which in the second reaction step reacts with another NO molecule to generate the final product through an inner-sphere electron-transfer reaction. The reported results are relevant for the interaction of vitamin B(12a) with NO and NO2-.  相似文献   

2.
The polyanionic, water-soluble, and non-micro-oxo dimer-forming iron porphyrin (hexadecasodium iron 54,104,154,204-tetra-t-butyl-52,56,102,106,152,156,202,206-octakis[2,2-bis(carboxylato)ethyl]-5,10,15,20-tetraphenylporphyrin), (P16-)FeIII, with 16 negatively charged meso substituents on the porphyrin was synthesized and fully characterized by UV-vis and 1H NMR spectroscopy. A single pKa1 value of 9.90 +/- 0.01 was determined for the deprotonation of coordinated water in the six-coordinate (P16-)FeIII(H2O)2 and as attributed to the formation of the five-coordinate monohydroxo-ligated form, (P16-)FeIII(OH). The porphyrin complex reversibly binds NO in aqueous solution to yield the nitric oxide adduct, (P16-)FeII(NO+)(L), where L = H2O or OH-. The kinetics for the reversible binding of NO were studied as a function of pH, temperature, and pressure using the stopped-flow technique. The data for the binding of NO to the diaqua complex are consistent with the operation of a dissociative mechanism on the basis of the significantly positive values of DeltaS and DeltaV, whereas the monohydroxo complex favors an associatively activated mechanism as determined from the corresponding negative activation parameters. The rate constant, kon = 3.1 x 104 M-1 s-1 at 25 degrees C, determined for the NO binding to (P16-)FeIII(OH) at higher pH, is significantly lower than the corresponding value measured for (P16-)FeIII(H2O)2 at lower pH, namely, kon = 11.3 x 105 M-1 s-1 at 25 degrees C. This decrease in the reactivity is analogous to that reported for other diaqua- and monohydroxo-ligated ferric porphyrin complexes, and is accounted for in terms of a mechanistic changeover observed for (P16-)FeIII(H2O)2 and (P16-)FeIII(OH). The formed nitrosyl complex, (P16-)FeII(NO+)(H2O), undergoes subsequent reductive nitrosylation to produce (P16-)FeII(NO), which is catalyzed by nitrite produced during the reaction. Concentration-, pH-, temperature-, and pressure-dependent kinetic data are reported for this reaction. Data for the reversible binding of NO and the subsequent reductive nitrosylation reaction are discussed in reference to that available for other iron(III) porphyrins in terms of the influence of the porphyrin periphery.  相似文献   

3.
The reaction of iron(III) (meso-tetrakis(N-methylpyridinium-4-yl)porphyrin (Fe(III)TMPyP) with nitric oxide (NO) was studied by electronic absorption spectroscopy, ESR, and electrochemical and spectroelectrochemical techniques in aqueous solutions with pH from 2.2 to 12.0. Fe(III)TMPyP has been found to undergo a reductive nitrosylation in all pHs, and the product of nitric oxide binding to the porphyrin has been determined as iron(II) porphyrin nitrosyl complex ([Fe(II)(NO)TMPyP]). The rate of the reductive nitrosylation exhibits a tendency to get faster with increase in pH. An intermediate species was observed around neutral pH by spectroelectrochemical technique and was proposed to be the iron(II) nitrosyl complex of the mu-oxo dimeric form of FeTMPyP, which is known to be a predominant in neutral solutions.  相似文献   

4.
Cationic complexes of the type fac-[(L(2))Pt(IV)Me(3)(pyr-X)][OTf] (pyr-X = 4-substituted pyridines; L(2) = diphosphine, viz., dppe = bis(diphenylphosphino)ethane and dppbz = o-bis(diphenylphosphino)benzene; OTf = trifluoromethanesulfonate) undergo C-C reductive elimination reactions to form [L(2)Pt(II)Me(pyr-X)][OTf] and ethane. Detailed studies indicate that these reactions proceed by a two-step pathway, viz., initial reversible dissociation of the pyridine ligand from the cationic complex to generate a five-coordinate Pt(IV) intermediate, followed by irreversible concerted C-C bond formation. The reaction is inhibited by pyridine. The highly positive values for DeltaS()(obs) = +180 +/- 30 J K(-1) mol(-1), DeltaH(obs) = 160 +/- 10 kJ mol(-1), and DeltaV()(obs) = +16 +/- 1 cm(3) mol(-1) can be accounted for in terms of significant bond cleavage and/or partial reduction from Pt(IV) to Pt(II) in going from the ground to the transition state. These cationic complexes have provided the first opportunity to carry out detailed studies of C-C reductive elimination from cationic Pt(IV) complexes in a variety of solvents. The absence of a significant solvent effect for this reaction provides strong evidence that the C-C reductive coupling occurs from an unsaturated five-coordinate Pt(IV) intermediate rather than from a six-coordinate Pt(IV) solvento species.  相似文献   

5.
The reaction of the water-soluble Fe(III)(TMPS) porphyrin with CN(-) in basic solution leads to the stepwise formation of Fe(III)(TMPS)(CN)(H(2)O) and Fe(III)(TMPS)(CN)(2). The kinetics of the reaction of CN(-) with Fe(III)(TMPS)(CN)(H(2)O) was studied as a function of temperature and pressure. The positive value of the activation volume for the formation of Fe(III)(TMPS)(CN)(2) is consistent with the operation of a dissociatively activated mechanism and confirms the six-coordinate nature of the monocyano complex. A good agreement between the rate constants at pH 8 and 9 for the formation of the dicyano complex implies the presence of water in the axial position trans to coordinated cyanide in the monocyano complex and eliminates the existence of Fe(III)(TMPS)(CN)(OH) under the selected reaction conditions. Both Fe(III)(TMPS)(CN)(H(2)O) and Fe(III)(TMPS)(CN)(2) bind nitric oxide (NO) to form the same nitrosyl complex, namely, Fe(II)(TMPS)(CN)(NO(+)). Kinetic studies indicate that nitrosylation of Fe(III)(TMPS)(CN)(2) follows a limiting dissociative mechanism that is supported by the independence of the observed rate constant on [NO] at an appropriately high excess of NO, and the positive values of both the activation parameters ΔS(?) and ΔV(?) found for the reaction under such conditions. The relatively small first-order rate constant for NO binding, namely, (1.54 ± 0.01) × 10(-2) s(-1), correlates with the rate constant for CN(-) release from the Fe(III)(TMPS)(CN)(2) complex, namely, (1.3 ± 0.2) × 10(-2) s(-1) at 20 °C, and supports the proposed nitrosylation mechanism.  相似文献   

6.
The kinetics of aquation of - and - cis[Co(edda)Cl2]–, - cis[Co(edda)(H2O)Cl] and - cis[Co(trien)Cl2]+ were investigated in aqueous mixtures of t-BuOH, MeOH, DMSO, ethylene carbonate and urea. The transfer Gibbs energy values for the reactants, evaluated from the solubility of the complexes, confirm the decisive role of the reactant solvation on the aquation rate.  相似文献   

7.
The spin states of the iron(III) complexes with a highly ruffled porphyrin ring, [Fe(TEtPrP)X] where X = F-, Cl-, Br-, I-, and ClO4(-), have been examined by 1H NMR, 13C NMR, EPR, and M?ssbauer spectroscopy. While the F-, Cl-, and Br- complexes adopt a high-spin (S = 5/2) state, the I- complex exhibits an admixed intermediate-spin (S = 5/2, 3/2) state in CD2Cl2 solution. The I- complex shows, however, a quite pure high-spin state in toluene solution as well as in the solid. The results contrast those of highly saddled [Fe(OETPP)X] where the I- complex exhibits an essentially pure intermediate-spin state both in solution and in the solid. In contrast to the halide-ligated complexes, the ClO4(-) complex shows a quite pure intermediate-spin state. The 13C NMR spectra of [Fe(TEtPrP)ClO4] are characterized by the downfield and upfield shifts of the meso and pyrrole-alpha carbon signals, respectively: delta(meso) = +342 and delta(alpha-py) = -287 ppm at 298 K. The data indicate that the meso carbon atoms of [Fe(TEtPrP)ClO4] have considerable amounts of positive spin, which in turn indicate that the iron has an unpaired electron in the d(xy) orbital; the unpaired electron in the d(xy) orbital is delocalized to the meso positions due to the iron(d(xy))-porphyrin(a(2u)) interaction. Similar results have been obtained in analogous [Fe(TiPrP)X] though the intermediate-spin character of [Fe(TiPrP)X] is much larger than that of the corresponding [Fe(TEtPrP)X]. On the basis of these results, we have concluded that the highly ruffled intermediate-spin complexes such as [Fe(TEtPrP)ClO4] and [Fe(TiPrP)ClO4] adopt a novel (d(xz), d(yz))3(d(xy))1(d(z)(2)1 electron configuration; the electron configuration of the intermediate-spin complexes reported previously is believed to be (d(xy))2(d(xz)), d(yz))2(d(z)(2))1.  相似文献   

8.
Isolation and characterisation of the tetrabutylammonium salt of difluoro iron(III) tetraphenylporphyrin are described.  相似文献   

9.
The half-wave potentials are given for the electrochemical reduction of Fe(III), Cr(III), and Mn(III) porphyrin complexes. Cyclic voltamperometry was used to study the reversibility of these reactions. An effect was demonstrated for the structure of the porphyrin ligand on the half-wave potentials for the reduction of the Mn(III) complexes.Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 7, pp. 1665–1668, July, 1991.  相似文献   

10.
Substituent effects of the meso-aryl (Ar) groups on the 1H and 13C NMR chemical shifts in a series of low-spin highly saddled iron(III) octaethyltetraarylporphyrinates, [Fe(OETArP)L2]+, where axial ligands (L) are imidazole (HIm) and tert-butylisocyanide ((t)BuNC), have been examined to reveal the nature of the interactions between metal and porphyrin orbitals. As for the bis(HIm) complexes, the crystal and molecular structures have been determined by X-ray crystallography. These complexes have shown a nearly pure saddled structure in the crystal, which is further confirmed by the normal-coordinate structural decomposition method. The substituent effects on the CH2 proton as well as meso and CH2 carbon shifts are fairly small in the bis(HIm) complexes. Since these complexes adopt the (d(xy))2(d(xz), d(yz))3 ground state as revealed by the electron paramagnetic resonance (EPR) spectra, the unpaired electron in one of the metal dpi orbitals is delocalized to the porphyrin ring by the interactions with the porphyrin 3e(g)-like orbitals. A fairly small substituent effect is understandable because the 3e(g)-like orbitals have zero coefficients at the meso-carbon atoms. In contrast, a sizable substituent effect is observed when the axial HIm is replaced by (t)BuNC. The Hammett plots exhibit a large negative slope, -220 ppm, for the meso-carbon signals as compared with the corresponding value, +5.4 ppm, in the bis(HIm) complexes. Since the bis((t)BuNC) complexes adopt the (d(xz), d(yz))4(d(xy))1 ground state as revealed by the EPR spectra, the result strongly indicates that the half-filled dxy orbital interacts with the specific porphyrin orbitals that have large coefficients on the meso-carbon atoms. Thus, we have concluded that the major metal-porphyrin orbital interaction in low-spin saddle-shaped complexes with the (d(xz), d(yz))4(d(xy))1 ground state should take place between the d(xy) and a(2u)-like orbital rather than between the dxy and a(1u)-like orbital, though the latter interaction is symmetry-allowed in saddled D(2d) complexes. Fairly weak spin delocalization to the meso-carbon atoms in the complexes with electron-withdrawing groups is then ascribed to the decrease in spin population in the d(xy) orbital due to a smaller energy gap between the d(xy) and dpi orbitals. In fact, the energy levels of the d(xy) and dpi orbitals are completely reversed in the complex carrying a strongly electron-withdrawing substituent, the 3,5-bis(trifluoromethyl)phenyl group, which results in the formation of the low-spin complex with an unprecedented (d(xy))2(d(xz), d(yz))3 ground state despite the coordination of (t)BuNC.  相似文献   

11.
A series of gold(III) cations of the type cis-[CH3)2AuL2]+ X? where L  Ph3, PMePh2, PMe2Ph, PMe3, AsPh3, AsPh3, SbPh3, 12H2NCH2CH2NH2, 12 Ph2PCH2CH2-PPh2, 12 Ph2AsCH2CH2AsPh2, and 12o-C6H4(AsMe2)2 and X  BF4?, PF6?, ClO4?, and F3CSO3? has been prepared. In addition, the cis complexes [(CH3)(CD3)-Au(PPh3)2]F3CSO3, [(C2H5)2Au(PPh3)2]F3CSO and [(n-C4H9)2Au(PPh3)2]F3-CSO3 have been synthesized. All have been characterized by PMR, Raman and infrared spectroscopy. These [R2AuL2]X compounds yield only ethane, butane, or octane via reductive elimination, and no disproportionation is observed. The alkane eliminations have been studied in CHCl3, CH3Cl2, and CH3COCH3 solution as a function of temperature, concentration of the complex, and concentration of added ligand L. Elimination is fastest when L is bulky (PPh3 > PMePh2 > PMe2Ph > PMe3), decreases in the sequence SbPh3 > AsPh3 > PPh3, is slow with chelating ligands, is inhibited by excess ligand, and there is small anion effect as X is varied. As R is varied, the rate of elimination decreases Bu ? Et > Me. An intramolecular dissociative mechanism is proposed which involves rapid elimination of alkane from an electron deficient dialkylgold(III) complex with nonequivalent gold—carbon bonds and produces the corresponding [AuL2]X complex.  相似文献   

12.
13.
Summary The preparation, structural study and chemical behaviour of new cationic, monoanionic and dianionic tetracoordinate nickel(I) complexes of the types: [NiL4][BPh4] (L=PPh3, AsPh3 or SbPh3), [PR4][NiX2L2] (X=Cl, Br or I; L=PPh3, AsPh3 or SbPh3 and [PR4]+=PPh4, Ph3PCH2Ph or Ph3PEt) and [PR4]2[NiX3L] (X=Cl, Br or I; L=PPh3 and [PR4]+=PPh4 or PPh3CH2Ph) are described.  相似文献   

14.
Model ferric heme nitrosyl complexes, [Fe(TPP)(NO)](+) and [Fe(TPFPP)(NO)](+), where TPP is the dianion of 5,10,15,20-tetrakis-phenyl-porphyrin and TPFPP is the dianion of 5,10,15,20-tetrakis-pentafluorophenyl-porphyrin, have been obtained as isolated species by the gas phase reaction of NO with [Fe(III)(TPP)](+) and [Fe(III) (TPFPP)](+) ions delivered in the gas phase by electrospray ionization, respectively. The so-formed nitrosyl complexes have been characterized by vibrational spectroscopy also exploiting (15)N-isotope substitution in the NO ligand. The characteristic NO stretching frequency is observed at 1825 and 1859 cm(-1) for [Fe(III)(TPP)(NO)](+) and [Fe(III)(TPFPP)(NO)](+) ions, respectively, providing reference values for genuine five-coordinate Fe(III)(NO) porphyrin complexes differing only for the presence of either phenyl or pentafluorophenyl substituents on the meso positions of the porphyrin ligand. The vibrational assignment is aided by hybrid density functional theory (DFT) calculations of geometry and electronic structure and frequency analysis which clearly support a singlet spin electronic state for both [Fe(TPP)(NO)](+) and [Fe(TPFPP)(NO)](+) complexes. Both TD-DFT and CASSCF calculations suggest that the singlet ground state is best described as Fe(II)(NO(+)) and that the open-shell AFC bonding scheme contribute for a high-energy excited state. The kinetics of the NO addition reaction in the gas phase are faster for [Fe(III)(TPFPP)](+) ions by a relatively small factor, though highly reliable because of a direct comparative evaluation. The study was aimed at gaining vibrational and reactivity data on five-coordinate Fe(III)(NO) porphyrin complexes, typically transient species in solution, ultimately to provide insights into the nature of the Fe(NO) interaction in heme proteins.  相似文献   

15.
Two iridium(III) soft salts based on ion-paired dinuclear cationic and mononuclear anionic complexes were designed and investigated as phosphorescent emitters for solution processed OLEDs. New dinuclear cationic complexes were prepared with two different bridging ligands, a carbazole and a phenylene spacer. Best devices were designed with the soft salt bearing a carbazole moiety.  相似文献   

16.
In aqueous solutions, inclusion complexation of Fe(III) tetrakis(4-sulfonatophenyl)porphyrin (FeTSPP) with alpha-cyclodextrin (alpha-CD), beta-CD, gamma-CD, and heptakis(2,3,6-tri-O-methyl)-beta-CD (TM-beta-CD) has been examined by means of absorption and induced circular dichroism spectroscopy. FeTSPP has been found to form inclusion complexes with beta-CD, gamma-CD, and TM-beta-CD in pH 3.2 buffers. At pH 10.1, where FeTSPP self-associates to form an oxo-bridged dimer, FeTSPP also forms inclusion complexes with alpha-CD, beta-CD, gamma-CD, and TM-beta-CD. The stoichiometries of the CD-FeTSPP inclusion complexes are 1:1, except for TM-beta-CD in pH 10.1 buffers where its 1:1 inclusion complex associates with TM-beta-CD to form a 2:1 inclusion complex at high TM-beta-CD concentrations. Equilibrium constants of FeTSPP for the formation of the 1:1 inclusion complexes have been evaluated for beta-CD, gamma-CD, and TM-beta-CD. Induced circular dichroism spectra of FeTSPP in alpha-CD and beta-CD solutions exhibit a signal pattern (a negative sign) that is different from those in acidic and basic solutions containing gamma-CD and that in basic solution containing TM-beta-CD, suggesting different inclusion modes towards FeTSPP.  相似文献   

17.
The reaction of bromazepam (7‐bromo‐1,3‐dihydro‐5‐(2‐pyridyl)‐2H ‐1,4‐benzodiazepin‐2‐one, BZM) with Cr(III) ( 1 ), Fe(III) ( 2 ) and Ru(III) ( 3 ) salts gives complexes of the type [M(BZM)3]⋅3X (X = Cl or NO3). Structural characterization was extensively carried out using various analytical and spectral tools such as infrared, 1H NMR and UV–visible spectroscopies and magnetic, conductance, elemental and thermal analyses. BZM is a bidentate ligand and interacts with the metal ions via the pyridine and benzodiazepin‐2‐one nitrogen atoms. The magnetic and electronic properties of 2 and 3 are consistent with low‐spin octahedral complexes. The three BZM molecules are non‐isoenergetically coordinated to the metal ions and this is reflected in the values of the second‐order interaction energy. The antibacterial activity was studied using Staphylococcus aureus and Escherichia coli . Coordination of BZM to Cr(III) or Ru(III) ions leads to a marked increase in toxicity with respect to the inactive Fe(III) complex 2 .  相似文献   

18.
Abstract

We report the synthesis and characterization of cationic Au(III) complexes supported by nitrogen-based ligands. The syntheses are achieved by reacting Au(I) complexes [Au(N-Me-imidazole)2]+ and [Au(pyridine)(NHC)]+ with iodine(III) reagents PhI(OTf)(OAc) and [PhI(pyridine)2]2+ yielding a series of cationic gold(III) complexes. In contrast, reactions of phosphine ligated gold(I) complexes with iodine(III) reagents results in the oxidation of the phosphine ligand.  相似文献   

19.
Four 2-benzthiazolethiol (BzTa)-linked porphyrins (1)–(4), and their complexes with CoII and MnIII, (5)–(12), were prepared and characterized by elemental analysis, 1H-n.m.r., i.r., u.v.–vis. and mass spectra. The hydroxylation of cyclohexane in the presence of these complexes and PhIO under mild conditions was investigated. The catalytic activities of these complexes were higher than that of corresponding TPPMnIIICl and TPPCoII species respectively, which indicated that the terminal group, BzTa, played an important role in the catalysis. A possible mechanism is proposed.  相似文献   

20.
The spectral and redox behavior of bis(diimine)copper(II) complexes, where diimine is bipyridine, 1,10-phenanthroline, 4-methyl-1,10-phenanthroline, 5-methyl-1,10-phenanthroline, 5-nitro-1,10-phenanthroline, 4,7-dimethyl-1,10-phenanthroline, 5,6-dimethyl-1,10-phenanthroline, 2,9-dimethyl-1,10-phenanthroline, 3,4,7,8-tetramethyl-1,10-phenanthroline and dipyrido-[3,2-d:2',3'-f]-quinoxaline, are significantly different in aqueous and in aqueous SDS, CTAB and Triton X-100 micellar solutions. The (1)H NMR spectral study in aqueous (D(2)O) and aqueous micelles reveals that the Cu(II) complexes interact more strongly with SDS than with CTAB and Triton X-100 micelles and at sites on SDS micelles different from those on the latter. Ligand Field spectral studies reveal that the complexes exist as the dicationic aquated species [Cu(diimine)(2)(H(2)O)(2)](2+), which interacts strongly with the anionic SDS micelles through columbic forces. However, they exist as [Cu(diimine)(2)(H(2)O)Cl](+) and/or [Cu(diimine)(2)H(2)] located in the hydrophobic microenvironments in Triton X-100 and CTAB micelles. The attainment of reversibility of the redox systems in the micellar microenvironments is remarkable and this illustrates that the Cu(II) and Cu(I) species undergo stereochemical changes suitable for reversible electron-transfer. The remarkable differences in spectral and electrochemical properties of Cu(II) complexes in aqueous and aqueous micellar solutions illustrate that the complexes are nestled largely within the micellar environments and imply that the accessibilities of the complexes to electron-transfer are different and are dependent on the nature of micelles as well as the nature and hydrophobicity of the diimine ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号