首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of the paper was to investigate the effect of ultrasonic emulsification treatment on the fabrication mechanism and stability of the emulsion. The covalent conjugate made with rice bran protein hydrolysate (RBPH) and ferulic acid (FA) was used as the emulsifier. The effects of high intensity ultrasound (HIU) power with different level (0 W, 150 W, 300 W, 450 W and 600 W) on the stability of emulsion were evaluated. The results showed that ultrasonic emulsification can significantly improve the stability of the emulsions (p < 0.05). The emulsion gained better stability and emulsifying property at 300 W. It was able to fabricate emulsion with smaller particle size, more uniform distribution and higher interfacial protein content. It was confirmed by fluorescent microscopy and cryo-scanning electron microscopy (cryo-SEM) furtherly. And it was also proved that the emulsion treated by proper HIU treatment at 300 W had better storage stability. Excessive HIU treatment (450 W, 600 W) had negative effects on the stability of emulsion. The stability of emulsion (300 W) against different environmental stresses was further explored, which established a theoretical basis for the industrial application of emulsion in food industry.  相似文献   

2.
In this study, hemp seed oil (HSO) emulsions stabilized with hemp seed protein (HPI) were prepared and treated with high intensity ultrasonic (HIU). The effects of different treatment powers (0, 150, 300, 450, 600 W) on the properties, microstructure and stability of emulsions were investigated. HIU-treated emulsions showed improved emulsifying activity index and emulsifying stability index, reduced particle size, and increased absolute values of ζ-potential, with the extreme points of these indices occurring at a treatment power of 450 W. Here, the emulsion showed the best dispersion and the smallest particle size in fluorescence microscopy observation, with the highest adsorbed protein content (30.12%), and the highest tetrahydrocannabinol (THC) retention rate (87.64%). The best thermal and oxidative stability of the emulsions were obtained under HIU treatment with a power of 450 W. The D43 and the peroxide values (POV) values after 30 d storage were the smallest at 985.74 ± 64.89 nm and 4.6 μmol/L, respectively. Therefore, 450 W was optimal HIU power to effectively improve the properties of HPI-stabilized HSO emulsion and promote the application of HSO and its derivatives in food processing production.  相似文献   

3.
In this study, an emulsion stabilized by soy protein isolate (SPI)-pectin (PC) complexes was prepared to investigate the effects of high-intensity ultrasound (HIU) treatment (150–600 W) on the physicochemical properties, microstructure, and stability of emulsions. The results found that the emulsion treated at 450 W showed the best emulsion stability index (ESI) (25.18 ± 1.24 min), the lowest particle size (559.82 ± 3.17 nm), the largest ζ-potential absolute value (16.39 ± 0.18 mV), and the highest adsorbed protein content (27.31%). Confocal laser scanning microscopy (CLSM) and atomic force microscopy (AFM) revealed that the emulsion aggregation was significantly improved by ultrasound treatment, and the average roughness value (Rq) was the smallest (10.3 nm) at 450 W. Additionally, HIU treatment reduced the interfacial tension and apparent viscosity of the emulsion. Thermal stability was best when the emulsion was treated at 450 W, D43 was minimal (907.95 ± 31.72 nm), and emulsion separation also improved. Consequently, the creaming index (CI) was significantly decreased compared to the untreated sample, indicating that the storage stability of the emulsion was enhanced.  相似文献   

4.
This study demonstrated the influences of ultrasound-assisted multilayer Pickering double emulsion capsules on the pasteurization and gastrointestinal digestive viability of probiotic (L. plantarum) strain liquid. Firstly, the role of ultrasonic homogenization on the morphology of W1/O/W2 double emulsions were studied. The double emulsion formed by ultrasonic intensity at 285 W had a single and narrow distribution with smallest droplet size. The double emulsion particles were then coated with chitosan(Chi), alginate (Alg), and CaCl2(Ca). The multilayer emulsion after pasteurization and gastrointestinal digestion both had the highest viability at 5 coating layers, but its particle size (108.65 μm) exceeded the limit of human oral sensory (80 μm). It could be noted that the deposition of 3–4 layers of coating had similar activity after pasteurization/GIT digestion. And droplets with 3 layers of coating were the minimum and most available formulation for encapsulated probiotics (L. plantarum). Hence, the results suggest that the use of ultrasound-assisted multilayer emulsions encapsulated with probiotics in granular food and pharmaceutical applications is a promising strategy.  相似文献   

5.
In this study, microcapsules were prepared by spray drying and embedding hemp seed oil (HSO) with soy protein isolate (SPI) and maltodextrin (MD) as wall materials. The effect of ultrasonic power on the microstructure and characteristics of the composite emulsion and microcapsules was studied. Studies have shown that ultrasonic power has a significant impact on the stability of composite emulsions. The particle size of the composite emulsion after 450 W ultrasonic treatment was significantly lower than the particle size of the emulsion without the ultrasonic treatment. Through fluorescence microscopy observation, HSO was found to be successfully embedded in the wall materials to form an oil/water (O/W) composite emulsion. The spray-dried microcapsules showed a smooth spherical structure through scanning electron microscopy (SEM), and the particle size was 10.7 μm at 450 W. Fourier transform infrared (FTIR) spectroscopy analysis found that ultrasonic treatment would increase the degree of covalent bonding of the SPI-MD complex to a certain extent, thereby improving the stability and embedding effect of the microcapsules. Finally, oxidation kinetics models of HSO and HSO microcapsules were constructed and verified. The zero-order model of HSO microcapsules was found to have a higher degree of fit; after verification, the model can better reflect the quality changes of HSO microcapsules during storage.  相似文献   

6.
A highly hygienic walnut emulsion beverage was prepared by using a slit dual-frequency emulsification technique. The optimal ultrasonic parameters were studied as a model system: the ultrasonic time of 50 min, the ultrasonic power density of 260 W/L, and a dual-frequency ultrasonic combination of 28/68 kHz. Walnut emulsion with an average mean volume diameter of 2.05 µm, a Zeta potential absolute value of 40 mV was obtained after ultrasonic treatment, and the emulsion stability could be maintained for more than 14 days without phase separation. At the lowest ultrasonic energy input, the vibrating emulsion could promote droplet aggregation. However, excessive energy input could result in sample overtreatment and reduced emulsion activity. The laser scanning confocal microscope (LSCM) and transmission electron microscope (TEM) confirmed that walnut emulsion processed by slit dual-frequency ultrasonic had pretty high stability. Therefore, the slit dual-frequency ultrasonic emulsification technique was found to be well suited for the preparation of complex and fine oil-in-water food emulsions.  相似文献   

7.
In this study, rice bran protein–chlorogenic acid (RBP–CA) emulsion was subjected to an ultrasonic-assisted treatment technique. The encapsulation efficiency and loading capacity of chlorogenic acid (CA), and the morphology, particle size, zeta (ζ)-potential, atomic force microscopy image, viscosity, turbidity, and interfacial protein content of the emulsion under different ultrasonic power were investigated. The results revealed that the emulsion exhibited an encapsulation efficiency and loading capacity of 86.26 ± 0.11% and 17.25 ± 0.06 g/100 g, respectively, at an ultrasonic power of 400 W. In addition, the size of the emulsion droplets decreased and became more evenly distributed. Furthermore, the viscosity of the emulsion decreased significantly, and it exhibited a turbidity and interfacial protein content of 24,758 and9.34 mg/m2, respectively. Next, the storage, oxidation, thermal, and salt ion stabilities of the emulsion were evaluated. The results revealed that the ultrasonic-assisted treatment considerably improved the stability of the emulsion.  相似文献   

8.
A lysozyme-oregano essential oil (Lys-OEO) antibacterial emulsion was developed via ultrasonic treatment. Based on the general emulsion materials of ovalbumin (OVA) and inulin (IN), the addition of Lys and OEO successfully inhibited the growth of E. coli and S. aureus, two representatives of which were Gram-negative and Gram-positive bacteria respectively. The emulsion system in this study was designed to compensate for the limitation that Lys could only act on Gram-positive bacteria, and the stability of the emulsion was improved using ultrasonic treatment. The optimal amounts among OVA, Lys and OEO were found to be the mass ratio of 1:1 (Lys to OVA) and 20% (w/w) OEO. The ultrasonic treatment at the power of 200, 400, 600, and 800 W and time length of 10 min improved the stability of emulsion, in which the surface tension was below 6.04 mN/m and the Turbiscan stability index (TSI) did not exceed 10. The multiple light scattering showed that sonicated emulsions were less prone to delamination; salt stability and pH stability of emulsions were improved, CLSM image showed emulsion as oil-in-water type. In the meantime, the particles of the emulsions were found to become smaller and more uniform with ultrasonic treatment. The best dispersion and stability of the emulsion were both achieved at 600 W with a zeta potential of 7.7 mV, the smallest particle size and the most uniform particle distribution.  相似文献   

9.
In this study, soybean protein isolate (SPI) and pectin emulsion gels were prepared by thermal induction, and the effects of high intensity ultrasound (HIU) at various powers (0, 150, 300, 450 and 600 W) on the structure, gel properties and stability of emulsion gels were investigated. Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) showed that the interaction between SPI and pectin was enhanced and the crystallinity of the emulsion gels was changed due to the HIU treatment. Confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM) observations revealed that the particle size of the emulsion gels was decreased significantly by HIU treatment. The emulsion gel structure became more uniform and denser, which was conducive to storage stability. In addition, according to the low field nuclear magnetic resonance (LF-NMR) analysis, HIU treatment had no obvious impact on the content of bound water as the power increased to 450 W, while the content of free water decreased gradually and became immobilized water, which indicated that the water holding capacity of the emulsion gels was enhanced. Compared with untreated emulsion gel, differential scanning calorimetry (DSC) analysis showed that the denaturation temperature reached 131.9 ℃ from 128.2 ℃ when treated at 450 W. The chemical stability and bioaccessibility of β-carotene in the emulsion gels were improved significantly after HIU treatment during simulated in vitro digestion.  相似文献   

10.
In this study, the three-dimensional network system formed by rice bran wax (RBW) was used as the internal structure, and the external structure formed by soybean protein isolate (SPI) and phosphatidylserine (PS) was added on the basis of the internal structure to prepare walnut oil oleogel (SPI-PS-WOG). Ultrasonic treatment was applied to the mixed solution to make SPI-PS-WOG, on the basis, the effects of ultrasonic treatment on SPI-PS-WOG were investigated. The results showed that both β and β’ crystalline forms were present in all SPI-PS-WOG samples. When the ultrasonic power was 450 W, the first weight loss peak in the thermogravimetric (TGA) curve appeared at 326 °C, which was shifted to the right compared to the peak that occurred when the ultrasonic power was 0 W, indicating that the thermal stability of the SPI-PS-WOG was improved by the ultrasonic treatment. Moreover, when the ultrasonic power was 450 W, the oil holding capacity (OHC) reached 95.3 %, which was the best compared with other groups. Both confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM) showed that the ultrasonic treatment of appropriate power succeeded in making the SPI-PS-WOG samples more evenly dispersed in the internal structure and denser in the external structure. In terms of oxidative stability, it was found that the peroxide value of SPI-PS-WOG remained at 9.8 mmol/kg oil for 50 days under 450 W ultrasonic power treatment, which was significantly improved compared with liquid walnut oil (WO). These results provide a new idea for the preparation of oleogels, and also lay a theoretical foundation for the application of ultrasonic treatment in oleogels.  相似文献   

11.
The present work demonstrates the effective application of pretreatment based on cavitation to improve biological oxidation of real municipal and industrial wastewater. The optimum pretreatment conditions based on ultrasonic cavitation for treatment of municipal wastewater were observed as power dissipation of 90 W, a duty cycle of 70% and H2O2 dosage of 0.2 g/L resulting in about 24.9% COD reduction. The use of modified sludge and ultrasonic pretreatment for biological oxidation resulted in significant reduction in treatment time (36 h) than the treatment time (60 h) required for biological oxidation using untreated sludge as inoculum. Also, significantly enhanced biodegradability index (BI) from 0.33 to 0.6 was achieved using pretreatment for biological oxidation process. For the treatment of real industrial wastewater, different pretreatment approaches based on hydrodynamic cavitation (HC) in combination with H2O2, ozone or Fenton were investigated. The pretreatment using best approach of HC + Fenton resulted in 44.2% of COD reduction in total whereas only 28.1% of COD reduction was achieved for the untreated effluent being applied in the biological oxidation. Overall, the present work demonstrated the effectiveness of the pretreatment based on cavitation for the improved treatment of municipal and industrial wastewaters.  相似文献   

12.
Ultrasound technology was used to treat rice bran protein (RBP), and the structural and functional properties of ultrasonically treated RBP (URBP) and its chlorogenic acid (CA) complex were studied. When ultrasonic power of 200 W was applied for 10 min, the maximum emission peak λmax of the URBP-CA complex in the fluorescence spectrum was red-shifted by 3.6 nm compared to that of the untreated complex. The atomic force microscope (AFM) analysis indicated that the surface roughness of the complex was minimized (3.89 nm) at the ultrasonic power of 200 W and treatment time of 10 min. Under these conditions, the surface hydrophobicity (H0) was 1730, the contents of the α-helix and β-sheet in the complex were 2.97% and 6.17% lower than those in the untreated sample, respectively, the particle size decreased from 106 nm to 18.2 nm, and the absolute value of the zeta-potential increased by 11.0 mV. Therefore, ultrasonic treatment and the addition of CA changed the structural and functional properties of RBP. Moreover, when ultrasonic power of 200 W was applied for 10 min, the solubility, emulsifying activity index (EAI), and emulsion stability index (ESI) were 68%, 126 m2/g, and 37 min, respectively.  相似文献   

13.
The ultrasonic formation of stable emulsions of a bioactive material, black seed oil, in skim milk was investigated. The incorporation of 7% of black seed oil in pasteurised homogenized skim milk (PHSM) using 20 kHz high intensity ultrasound was successfully achieved. The effect of sonication time and acoustic power on the emulsion stability was studied. A minimum process time of 8 min at an applied acoustic power of 100 W was sufficient to produce emulsion droplets stable for at least 8 days upon storage at 4 ± 2 °C, which was confirmed through creaming stability, particle size, rheology and color analysis. Partially denatured whey proteins may provide stability to the emulsion droplets and in addition to the cavitation effects of ultrasound are responsible for the production of smaller sized emulsion droplets.  相似文献   

14.
Lotus seed starch nanoparticles were prepared by ultrasonic (ultrasonic power: 200 W, 600 W, 1000 W; time: 5 min, 15 min, 25 min; liquid ratio (starch: buffer solution): 1%, 3%, 5%) assisted enzymatic hydrolysis (LS-SNPs represent lotus seed starch nanoparticles prepared by enzymatic hydrolysis and U-LS-SNPs represent lotus seed starch nanoparticles prepared by high pressure homogenization-assisted enzymatic hydrolysis). The structure and physicochemical properties of U-LS-SNPs were studied by laser particle size analysis, scanning electron microscope, X-ray diffraction, Raman spectroscopy, nuclear magnetic resonance and gel permeation chromatography system. The results of scanning electron microscopy showed that the surface of U-LS-SNPs was cracked and uneven after ultrasonic-assisted enzymolysis, and there was no significant difference from LS-SNPs. The results of particle size analysis and gel permeation chromatography showed that the particle size of U-LS-SNPs (except 5% treatment group) was smaller than that of LS-SNPs. With the increase of ultrasonic power and time, the weight average molecular gradually decreased. The results of X-ray diffraction and Raman spectroscopy showed that ultrasonic waves first acted on the amorphous region of starch granules. With the increase of ultrasonic power and time, the relative crystallinity of U-LS-SNPs increased first and then decreased. The group (600 W, 15 min, 3%) had the highest relative crystallinity. The results of nuclear magnetic resonance studies showed that the hydrogen bond and double helix structure of starch were destroyed by ultrasound, and the double helix structure strength of U-LS-SNPs was weakened compared with LS-SNPs. In summary, U-LS-SNPs with the small-sized and the highest crystallinity can be prepared under the conditions of ultrasonic power of 600 W, time of 15 min and material-liquid ratio of 3%.  相似文献   

15.
In this study, we investigated the effect of the ultrasound-assisted Maillard reaction on the structural and emulsifying properties of myofibrillar protein (MP) and dextran (DX) conjugates with different molecular weights (40, 70 and 150 kDa). Compared with classical heating, mild and moderate ultrasound-assisted methods (100–200 W) could accelerate the later stage of the Maillard reaction, which increased the degree of graft (DG) and the content of advanced Maillard reaction products (MPRs). Structural analysis revealed conjugates obtained by Maillard reaction induced the loss of ordered secondary structures (α-helix, β-sheets) and red-shift of maximum emission wavelength of intrinsic fluorescence spectrum. The conjugate containing 40 kDa DX exhibited higher extent of Maillard reaction compared to those containing 70 kDa and 150 kDa DX under various treating methods. Moreover, the ultrasound-assisted Maillard reaction could effectively improve the emulsifying behaviors. 100 W ultrasound-induced conjugates grafted by 70 kDa DX produced the smallest emulsion size with optimum storage stability. Confocal laser scanning microscopy and analytical centrifugal analyzer further confirmed MP grafted by 70 kDa DX with the assistance of 100 W ultrasound field could produce the smallest and most homogeneous MP-base emulsion with no flocculation. Our study demonstrated that mild ultrasound treatment resulted in well-controlled Maillard reaction, and the related glycoconjugate grafted with 70 kDa DX showed the greatest improvements in emulsifying ability and stability. These findings provided a theoretical foundation for the development of emulsion-based foods with excellent characteristics.  相似文献   

16.
In this research, the effect of ultrasonic irradiation power (0, 75, 150 and 200 W) and time (0, 5, 15 and 20 min) on the structure, morphology and photocatalytic activity of zinc oxide nanoparticles synthesized by sol-gel method was investigated. Crystallographic structures and the morphologies of the resultant powders were determined by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The XRD patterns showed that ZnO samples were crystallized in their pure phase. The purity of samples was increased by increasing the ultrasonic irradiation power and time. Not only did ultrasonic irradiation unify both the structure and the morphology, but also it reduced the size and prohibited particles from aggregation. The optical behavior of the samples was studied by UV–vis spectroscopy. Photocatalytic activity of particles was measured by degradation of methyl orange under radiation of ultraviolet light. Ultrasound nanoparticles represented higher degradation compared to non-ultrasound ones.  相似文献   

17.
Petroleum is a continuous and dynamically stable colloidal system. In the process of oil extraction, transportation, and post-treatment, the stability of the petroleum sol system is easily destroyed, resulting in asphaltenes precipitation that can make pore throat, oil wells, and pipelines blocked, thereby damaging the reservoir and reducing oil recovery. In this paper, removing near-well plugging caused by asphaltene deposition with high-power ultrasound is investigated. Six PZT transducers with different parameters were used to carry out the experimental study. Results show that ultrasonic frequency is one important factor for removing colloidal precipitation plugging in cores, it could not be too high nor too low. The optimum ultrasonic frequency is 25 kHz; Selecting transducers with a higher power is an effective way to improve the removal efficiency. The optimum ultrasonic power is 1000 W. With the increase of ultrasonic treatment time, the recovery rate reaches the maximum and tends to be stable. ultrasonic processing time should be controlled within 120 min. Besides, three methods — ultrasonic treatment alone, chemical injection alone, and ultrasound-chemical method — for removing colloidal precipitation plugging are compared. Results indicate that the ultrasound-assisted chemical method is better than chemical injection alone or ultrasonic treatment alone to remove colloidal sediment in the core. Finally, the mechanism of the ultrasonic deplugging technique is analyzed from three aspects: cavitation effect, the thermal effect, and mechanical vibration.  相似文献   

18.
Electrodeposited Ni–W alloy assisted by high-intensity ultrasound was evaluated considering the nominal power effect on the anticorrosive property. Temperature profiles demonstrated that using a nominal power of 400 W, the electrolytic bath at 30 °C reached values of 39 ± 1 °C. The maximum acoustic power corresponded to 6.7% of the nominal power value at 400 W. Increasing the nominal power from 0 to 400 W; the Ni content decreased from 85.3 to 75.2 wt%, and the W content increased from 15.1 to 25.1 wt%. The deposited coating at 200 W and 300 W had a smooth, homogeneous, and uniform surface. At 400 W, the acoustic cavitation promoted erosion, affecting the coating surface. X-ray diffraction analysis indicated that the nominal power of 200 W promoted electrodeposition of the Ni17W3 structure with the plane (1 1 1) as a preferred orientation. The crystallite size decreased for the planes (1 1 1) and (2 0 0) when increased nominal power from 100 to 200 W. The optimum condition for the improved corrosion resistance occurred with the nominal power of 200 W, providing a polarization resistance of 23.42 kΩ cm2.  相似文献   

19.
The present work analyses the mechanism of W2C/C nanocomposite formation during sonolysis of W(CO)6 in diphenylmethane (DPhM) solutions. Carbon supported WCx nanoparticles attract much interest as an alternative fuel cell electrocatalysts. Sonolysis of neat DPhM under the effect of 20 kHz power ultrasound in argon at 80 °C yields a sonopolymer as a solid product and acetylene, hydrogen, methane, diacetylene and benzene as gaseous products. Diacetylene is formed due to the secondary sonochemical dimerisation of acetylene obtained at the primary stage of DPhM sonolysis. FTIR and μ-Raman studies show that the sonopolymer consists of a mixture of some polymeric partially oxidized aromatic species, and disordered carbon. Sonolysis of W(CO)6 in diphenylmethane solutions follows the first order kinetics. This process yields monodispersed 2-3 nm X-ray amorphous WCx nanoparticles embedded in amorphous sonopolymer. The annealing of air sensitive as-prepared solids in an inert atmosphere at 600 °C causes formation of stable W2C/C nanocomposite with W2C average particle size in the range of 4-7 nm and hexagonal carbon fine particles with the average size of 30-40 nm. Kinetic study revealed that tungsten carbide is formed inside the cavitation bubble due to the reaction of tungsten nanoparticles originated from primary sonolysis of W(CO)6 with acetylene produced as a result of diphenylmethane sonochemical degradation.  相似文献   

20.
An ultrasonic technique was applied to preparation of two-phase water-in-oil (W/O) emulsified fuel of water/diesel oil/surfactant. In this study, an ultrasonic apparatus with a 28 kHz rod horn was used. The influence of the horn tip position during ultrasonic treatment, sonication time and water content (5 or 10 vol%) on the emulsion stability, viscosity, water droplet size and water surface area of emulsion fuels prepared by ultrasonication was investigated. The emulsion stability of ultrasonically-prepared fuel significantly depended on the horn tip position during ultrasonic irradiation. It was found that the change in the stability with the horn tip position was partly related to that in the ultrasonic power estimated by calorimetry. Emulsion stability, viscosity and sum of water droplets surface area increased and water droplet size decreased with an increase in sonication time, and they approached each limiting value in the longer time. The maximum values of the viscosity and water surface area increased with water content, while the limiting values of the emulsion stability and water droplet size were almost independent of water content. During ultrasonication of water/diesel oil mixture, the hydrogen and methane were identified and the cracking of hydrocarbon components in the diesel oil occurred. The combustion characteristics of ultrasonically-prepared emulsion fuel were studied and compared with those of diesel oil. The soot and NOx emissions during combustion of the emulsified fuel with higher water contents were significantly reduced compared with those during combustion of diesel oil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号