首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 672 毫秒
1.
The purpose of this study was to examine plasma-activated buffer solution (PABS) and plasma-activated water (PAW) combined with ultrasonication (U) treatment on the reduction of chlorothalonil fungicide and the quality of tomato fruits during storage. To obtain PAW and PABS, an atmospheric air plasma jet was used to treat buffer solution and deionized water at different treatment times (5 and 10 min). For combined treatments, fruits were submerged in PAW and PABS, then sonicated for 15 min, and individual treatment without sonication. As per the results, the maximum chlorothalonil reduction of 89.29% was detected in PAW-U10, followed by 85.43% in PABS. At the end of the storage period, the maximum reduction of 97.25% was recorded in PAW-U10, followed by 93.14% in PABS-U10. PAW, PABS, and both combined with ultrasound did not significantly affect the overall tomato fruit quality in the storage period. Our results revealed that PAW combined with sonication had a significant impact on post-harvest agrochemical degradation and retention of tomato quality than PABS. Conclusively, the integrated hurdle technologies effectively reduce agrochemical residues, which helps to lower health hazards and foodborne illnesses.  相似文献   

2.
Sonication is an emerging sustainable and eco-friendly technology that has been broadly explored in food processing and preservation. Sonication has the edges of low energy consumption and high efficiency than conventional decontamination methods and would not pass on secondary pollutants. In the current research, we analyzed the impact of sonication on anilazine fungicide reduction, bioactive compound, antioxidant activity, colloidal stability, and enzymatic and microbial load of tomato juice. Sonicated treatments were carried out at 40 kHz, 480 W, 30 ± 2 °C for 0, 8, 16, 24, 32, and 40 min in an ultrasonic bath cleaner. The GC–MS outcomes revealed that the anilazine maximum reduction in tomato juice attained 80.52 % at 40 min of sonication. The anilazine concentration reduced significantly (p ≤ 0.05) with increased sonication time. In contrast, sonication treatments have acquired the highest TFC, TPC, ascorbic acid, carotenoids, lycopene, ABTS, and ORAC assay than the untreated sample. The Sonication process significantly improved (p ≤ 0.05) colloidal stability by reducing particle size distribution, apparent viscosity, and sedimentation index. Sonication prolonged tomato juice's shelf life by reducing the total viable count from 6.31 to 1.91 log CFU/mL. Polygalacturonase and pectin methyl esterase of the sonication sample at 40 min were inactivated by 44.32 % and 64.2 %, respectively. Considering this issue from a future perspective, sonication processing can be used industrially to enhance fruit juice's nutritional properties and shelf life and reduce pesticides and other organic residues.  相似文献   

3.
To study the impacts of thermosonication (TS), the spinach juice treated with TS (200 W, 400 W, and 600 W, 30 kHz, at 60 ± 1 °C for 20 mint) were investigated for bioactive compounds, antioxidant activities, color properties, particle size, rheological behavior, suspension stability, enzymatic and microbial loads. As a result, TS processing significantly improved the bioactive compounds (total flavonols, total flavonoids, total phenolic, carotenoids, chlorophyll, and anthocyanins), antioxidant activities (DPPH and FRAP assay) in spinach juice. Also, TS treatments had higher b*, L*, hue angle (h0), and chroma (C) values, while minimum a* value as compared to untreated and pasteurized samples. TS processing significantly reduced the particle size, improved the suspension stability and rheological properties (shear stress, apparent viscosity, and shear rate) of spinach juice as compared to the untreated and pasteurized sample. TS plays a synergistic part in microbial reduction and gained maximum microbial safety. Moreover, TS treatments inactivated the polyphenol oxidase and peroxidase from 0.97 and 0.034 Abs min−1 (untreated) to 0.31 and 0.018 Abs min−1, respectively. The spinach juice sample treated at a high intensity (600 W, 30 kHz, at 60 ± 1 °C for 20 mint, TS3) exhibited complete inactivation of microbial loads (<1 log CFU/ml), the highest reduction in enzymatic activities, better suspension stability, color properties, and highest bioactive compounds. Collectively, the verdicts proposed that TS processing could be a worthwhile option to pasteurize the spinach juice to enhance the overall quality.  相似文献   

4.
In order to obtain noni juice with high yield and good quality, the effect of combined extraction technique of enzymatic treatment (EZ) and ultrasonication (US) on the overall quality of noni juice was investigated. Moreover, the extraction performance of the EZ-US combined extraction technique was compared with that of EZ-based extraction and the US-based extraction. Response surface methodology (RSM) was designed to optimize the parameters of ultrasonic treatment, by taking consideration of the extraction efficiency, quality parameters and bioactive ingredients of noni juice. The results indicated that combined ultrasonic and enzymatic treatment achieved a synergistic effect on promoting the quality of noni juice. The maximum juice yield of 67.95 % was obtained under ultrasonication for 10 min at 600 W after enzymatic treatment (EZU). In addition, EZU-treated juice exhibited the highest contents of total phenolic and flavonoid, which were 148.19 ± 2.53 mg gallic acid/100 mL and 47.19 ± 1.22 mg rutin/100 mL, respectively, thus contributing to better antioxidant activity. Moreover, the EZU treatment significantly reduced the particle size of noni juice, and improved its suspension stability and rheological properties. FTIR results indicated that the treatments did not bring major changes in the chemical structure and the functional groups of compounds in noni juice. Therefore, EZU treatment can be successfully applied to the extraction of noni juice with better nutritional properties and overall quality.  相似文献   

5.
In this work, low-intensity ultrasonication (58.3 and 93.6 W/L) was performed at lag, logarithmic and stationary growth phases of Lactobacillus plantarum in apple juice fermentation, separately. Microbial responses to sonication, including microbial growth, profiles of organic acids profile, amino acids, phenolics, and antioxidant capacity, were examined. The results revealed that obvious responses were made by Lactobacillus plantarum to ultrasonication at lag and logarithmic phases, whereas sonication at stationary phase had a negligible impact. Sonication at lag and logarithmic phases promoted microbial growth and intensified biotransformation of malic acid to lactic acid. For example, after sonication at lag phase for 0.5 h, microbial count and lactic acid content in the ultrasound-treated samples at 58.3 W/L reached 7.91 ± 0.01 Log CFU/mL and 133.70 ± 7.39 mg/L, which were significantly higher than that in the non-sonicated samples. However, the ultrasonic effect on microbial growth and metabolism of organic acids attenuated with fermentation. Moreover, ultrasonication at lag and logarithmic phases had complex influences on the metabolism of apple phenolics such as chlorogenic acid, caffeic acid, procyanidin B2, catechin and gallic acid. Ultrasound could positively affect the hydrolysis of chlorogenic acid to caffeic acid, the transformation of procyanidin B2 and decarboxylation of gallic acid. The metabolism of organic acids and free amino acids in the sonicated samples was statistically correlated with phenolic metabolism, implying that ultrasound may benefit phenolic derivation by improving the microbial metabolism of organic acids and amino acids.  相似文献   

6.
Ultrasonic treatment is an emerging food processing technology that has growing interest among health-conscious consumers. Freshly squeezed Chokanan mango juice was thermally treated (at 90 °C for 30 and 60 s) and sonicated (for 15, 30 and 60 min at 25 °C, 40 kHz frequency, 130 W) to compare the effect on microbial inactivation, physicochemical properties, antioxidant activities and other quality parameters. After sonication and thermal treatment, no significant changes occurred in pH, total soluble solids and titratable acidity. Sonication for 15 and 30 min showed significant improvement in selected quality parameters except color and ascorbic acid content, when compared to freshly squeezed juice (control). A significant increase in extractability of carotenoids (4–9%) and polyphenols (30–35%) was observed for juice subjected to ultrasonic treatment for 15 and 30 min, when compared to the control. In addition, enhancement of radical scavenging activity and reducing power was observed in all sonicated juice samples regardless of treatment time. Thermal and ultrasonic treatment exhibited significant reduction in microbial count of the juice. The results obtained support the use of sonication to improve the quality of Chokanan mango juice along with safety standard as an alternative to thermal treatment.  相似文献   

7.
Apple juice (13 °Brix) spiked with malathion and chlorpyrifos (2–3 mg l−1 of each compound) was treated under different ultrasonic irradiations. Results showed that ultrasonic treatment was effective for the degradation of malathion and chlorpyrifos in apple juice, and the output power and treatment time significantly influenced the degradation of both pesticides (p < 0.05). The maximum degradations were achieved for malathion (41.7%) and chlorpyrifos (82.0%) after the ultrasonic treatment at 500 W for 120 min. The degradation kinetics of both pesticides were fitted to the first-order kinetics model well (R2  0.90). The kinetics parameters indicated that chlorpyrifos was much more labile to ultrasonic treatment than malathion. Furthermore, malaoxon and chlorpyrifos oxon were identified as the degradation products of malathion and chlorpyrifos by gas chromatography–mass spectrometry (GC–MS), respectively. The oxidation pathway through the hydroxyl radical attack on the PS bond of pesticide molecules was proposed.  相似文献   

8.
The objective of this study was to evaluate the effect of different treatments—heat treatment (HT), sonication (SC), thermosonication (TS), manosonication (MS), manothermal (MT), and manothermosonication (MTS) on Escherichia coli O157:H7, polyphenol oxidase (PPO), and anthocyanin content in blueberry juice. First, samples were treated at different temperatures (30, 40, 50, 60, 70, and 80 °C) and power intensities (280, 420, 560, and 700 W) for 10 min. Subsequently, samples were treated using combinations of power intensity and mild temperature for 10 min. For further study, samples were treated using HT (80 °C), TS (40 °C, 560 W), MT (350 MPa, 40 °C), MS (560 W, 5 min/350 MPa), or MTS (560 W, 5 min, 40 °C/350 MPa, 40 °C) for 5, 10, 15, 20 min for each treatment, and the results compared between treatments. HT significantly reduced PPO activation (2.05% residual activity after only 5 min), and resulted in a 2.00-log reduction in E. coli O157:H7 and an 85.25% retention of anthocyanin. Escherichia coli O157:H7 was slightly inactivated by TS after 5 min (0.17-log reduction), while residual PPO activity was 23.36% and anthocyanin retention was 98.48%. However, Escherichia coli O157:H7 was rapidly inactivated by MTS (5.85-log reduction) after 5 min, while anthocyanin retention was 97.49% and residual PPO activity dropped to 10.91%. The destruction of E. coli cells as a result of these treatments were confirmed using SEM and TEM. Therefore, a combination of sonication, high pressure, and mild heat allows the safety of blueberry juice to be maintained without compromising the retention of desirable antioxidant compounds.  相似文献   

9.
Ultrasound-assisted enzymatic maceration (UAEM) has gained considerable interest in the fruit juice industry, owing to its potential to increase juice yield and content of polyphenols while simultaneously saving time and energy. In this study, the effects of UAEM (ultrasonic probe, 20 kHz, 21 W*cm−2 and 33 W*cm−2) on pectin degradation in a continuous circulation system were investigated over 60 and 90 min. Main pectinolytic enzymes activities of (polygalacturonase, pectin lyase and pectin methylesterase) of a commercial enzyme preparation were examined for individual synergistic effects with US. Pectin hydrolysis by UAEM differed significantly compared to treatment with ultrasound or enzymes alone regarding the profile of degradation products compared to treatment with ultrasound or enzymes alone. Ultrasound fragmented pectin to less branched oligomers of medium molecular weight (Mp approx. 150 kDa), which were further degraded by pectinolytic activities. The low molecular weight fraction (<30 kDa), which is known to be beneficial for juice-quality by adding nutritional value and stabilizing polyphenols, was enriched in small oligomers of homogalacturonan-derived, rhamnogalacturonan I-derived, and rhamnogalacturonan II-derived residues. Synergistic effects of ultrasound application enhanced the effective activities of polygalacturonase and pectin lyase and even prolonged their performance over 90 min, whereas the effective activity of pectin methylesterase was not affected. Final marker concentrations determined by each enzyme assay revealed a considerable higher total process output after UAEM treatment at reduced temperature (30 °C) comparable to the output after conventional batch maceration at 50 °C. The obtained results demonstrate the high potential of UAEM to produce high-quality juice by controlling pectin degradation while reducing process temperature and equally highlight the matrix and enzyme specific effects of a simultaneous US treatment.  相似文献   

10.
Ultrasounds are being considered an excellent alternative technology in juice preservation. Yet, when combined with heat treatment, the process seems to be further intensified. This work aimed to evaluate and compare the impact of ultrasounds and heat treatments, when applied alone or in combination, on Staphylococcus aureus survival in orange juice. Inoculated commercial pasteurized orange juice was treated at different times at 20, 30, 40, 50 and 60 °C. SEM analyses were applied to identify morphological changes in S. aureus cells appearance. The microbial inactivation data were fitted using two mathematical models, depending on the behaviour observed.Sonication at 20, 30, and 40 °C induced 4.02 ± 0.52, 3.80 ± 0.49 and 4.30 ± 0.74 log cycles reduction of S. aureus after treatments of 90, 60 and 60 min, respectively. The heat treatments at the same temperatures had no impact on S. aureus survival. When 50 and 60 °C were applied, more than 5-log reductions were attained for both thermosonication and heat treatments alone. A synergistic effect was observed between sonication and high temperatures. At 50 °C, the thermosonication reduced the treatment time from 60 to 35 min and the microbial load from 5.14 ± 0.08 to 10.76 ± 0.28 log cycles reduction, compared to heat treatment alone. Results from SEM images showed that cells undergo membrane damage during sonication exposure. This was observed by collapsed cells, cell disruption, and holes in the cell’s membrane.Thermosonication proved to be a viable alternative to thermal pasteurization of orange juice since milder treatments can be safely applied, improving the final product quality.  相似文献   

11.
The stability along with thermal and rheological characteristics of ionanofluids (INFs) profoundly depend on the protocol of preparation. Therefore, in this work, the effect of ultrasonication time on microstructure, thermal conductivity, and viscosity of INFs containing 0.2 wt% of originally ultra-long multi-walled carbon nanotubes (MWCNTs) and four different ILs, namely 1-propyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide, 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide, 1-ethyl-3-methylimidazolium thiocyanate, or 1-ethyl-3-methylimidazolium tricyanomethanide, was studied. The INFs were obtained by a two-step method using an ultrasonic probe. The ultrasonication process was performed for 1, 3, 10, or 30 min at a constant nominal power value of 200 W. The obtained results showed that for the shortest sonication time, the highest thermal conductivity enhancement of 12% was obtained. The extended sonication time from 1 to 30 min caused the cutting of MWCNTs and breaking the nanoparticle clusters, leading to a decrease in the average length of the nanotube bundles by approx. 70%. This resulted in a decline in thermal conductivity even by 7.2% and small deviations from the Newtonian behavior of INFs.  相似文献   

12.
Effect of high-frequency ultrasonication was examined on wastewater of a cheese manufacturing plant. Tests were carried out at two frequencies (500 kHz and 1 MHz) and two temperatures (22 and 40 °C). Samples were subjected to different energy densities; 7.5, 30.2, 60.5 and 121.0 J/mL at 500 kHz and 7.9, 31.7, 63.4 and 126.8 J/mL at 1 MHz to observe the creaming and recovery of lipid. These energy densities correspond to 30, 120, 240 and 480 s of sonication. Sonication was performed using a single plate transducer and reflector system at 40 W to create standing wave to coalesce and flocculate lipid globules. Recovery was higher at 40 °C after 480 s of sonication at both frequencies (77% at 500 kHz and 75% at 1 MHz). The lowest recovery of 47% was observed at 500 kHz and 22 °C at all applied energy densities. Changes in particle size and turbidity in the bottom aliquot indicated that high-frequency ultrasound caused coagulation and aggregation and settling of colloidal particles. Increase in particle size was observed to be highest at 1 MHz, 40 °C and 480 s of sonication. These results confirm that high-frequency ultrasound standing wave technology can be used to recover lipid from high-lipid dairy wastewater including that from cheese manufacturing.  相似文献   

13.
The degradation of phorate in apple juice by sonication was investigated in the present study. Results showed that sonication was effective in eliminating phorate in apple juice, and the ultrasonic power and sonication time significantly influenced the degradation of phorate (< 0.05). The degradation of phorate followed the first-order kinetics model well. Phorate-oxon and phorate sulfoxide were identified as the degradation products of phorate by gas chromatography-mass spectrometry (GC-MS). Moreover, the toxicity of apple juice samples spiked with phorate was significantly reduced by sonication (< 0.05). The quality indexes of apple juice including pH, titratable acidity (TA), electrical conductivity (EC), total soluble solids (TSS), and the contents of sucrose, glucose and fructose were not affected by sonication, and no visible difference in color was observed between the sonicated samples and the control.  相似文献   

14.
High pesticide residues in fresh produce is a serious food safety issue. This study was aimed at assessing the pesticides residues in some important vegetables and fruits marketed in Faisalabad, Pakistan and the impact of sonolytic ozonation (O3/US) treatment in removing these contaminants. From a short grower’s survey, five registered and mostly used pesticides (acetamiprid, carbendazim, imidacloprid, thiacloprid and thiamethoxam) were identified. A time optimization trial of O3/US application (05, 10 and 15 min) on okra, showed that 10 min treatment significantly reduced three identified chemicals (thiamethoxam 100 %, imidacloprid and thiacloprid 97.17 %), without any adverse effect on its quality. In follow up trial, five fresh vegetables (cauliflower, chillies, cucumber, spinach and tomato) three fresh fruits (grapes, guava and peach) collected from three markets of Faisalabad, were pooled together to have uniform samples. Vegetables and fruits were treated with O3/US for 10 and 6 min, respectively, along with control (simple tap wash) for determining the impacts on pesticides degradation. Samples were processed for extraction, clean up and analysis using HPLC-UV–Vis in isocratic mode. The data revealed the presence of five mentioned chemicals, with an accumulative mean residue of 9.006 and 1.921 µg/g in tested vegetables and fruits, respectively. After subjecting to O3/US, the accumulative chemical residues were reduced to 3.214 µg/g (64.313 %) and 1.064 (44.6 %) in treated vegetables and fruits respectively. Irrespective of fresh produce, the mean residues of thiamethoxam, imidachloprid, acetamiprid and thiachloprid and carbendazim were reduced by 99.3 %, 52.6 %, 65.2 %, 87.3 % and 72% respectively. It was concluded that sonolytic ozonation treatment was effective in significant reduction of pesticide residues from vegetables and fruits and thus can be employed as a good food safety practice at culinary level to reduce the associated health hazardous risks.  相似文献   

15.
百菌清残留检测及其与中药相互作用荧光光谱研究   总被引:1,自引:0,他引:1  
固定激发波长320 nm,对不同浓度百菌清药液进行荧光光谱实验,发现在352和366 nm处有明显特征峰,随着药液浓度降低,366 nm肩峰逐渐消失,而352 nm特征峰保持稳定;对百菌清浓度和所得发射光谱荧光强度(352 nm)进行指数函数回归分析,相关系数为0.999,实验结果与荧光强度-浓度理论计算公式相符合;对低浓度药液浓度和荧光强度进行线性拟合,其百菌清残留预测模型函数相关系数为0.995,最低检出限为0.018 8 μg·mL-1,定量极限值为0.062 7 μg·mL-1,线性范围为0.062 7~28.45 μg·mL-1。通过对中药材黄芪和枸杞与百菌清混合体系的荧光光谱进行研究,发现两种中药材对百菌清荧光强度都有较强的衰减,表明它们都和百菌清发生了相互作用。经过分析计算,黄芪和枸杞的衰减率分别为88.5%和99.7%,对其建立强度衰减模型函数,相关系数分别为0.994和0.997。研究结果为利用荧光光谱检测百菌清残留提供了实验依据,表明可以采用荧光光谱方法直接对百菌清农药残留进行检测,相关参数值满足检测要求标准,这为进一步利用荧光光谱检测该农药在果蔬中的残留具有重要的参考价值。同时发现药食同源类中药材枸杞和黄芪都能对百菌清荧光特征峰强度产生显著衰减,这为研究利用药食同源类中药材降解农药残留提供了新的研究思路。  相似文献   

16.
Cactus pear (Opuntia ficus-indica) fruit is a berry with a tasty pulp full of seeds that constitutes about 10–15% of the edible pulp. In Mexico, cactus pear is mainly consumed fresh, but also has the potential to be processed in other products such as juice. The objective of this study was to evaluate the effect of different ultrasound conditions at amplitude levels ranging (40% and 60% for 10, 15, 25 min; 80% for 3, 5, 8, 10, 15 and 25 min) on the characteristics of purple cactus pear juice. The evaluated parameters were related with the quality (stability, °Brix, pH), microbial growth, total phenolic compounds, ascorbic acid and antioxidant activity (ABTS, DPPH and % chelating activity) of purple cactus pear juices. The ultrasound treatment for time period of 15 and 25 min significantly reduced the microbial count in 15 and 25 min, without affecting the juice quality and its antioxidant properties. Juice treated at 80% of amplitude level showed an increased of antioxidant compounds. Our results demonstrated that sonication is a suitable technique for cactus pear processing. This technology allows the achievement of juice safety and quality standards without compromising the retention of antioxidant compounds.  相似文献   

17.
Sonication and dielectric barrier discharge (DBD) plasma are sustainable emerging food processing technologies. The study investigates the impact of sonication, DBD-plasma, and thermal treatment (TT) on wheat sprout juice. The obtained results indicated a significant (p < 0.05) increase in chlorophyll, total phenolics, flavonoids, DPPH assay, and ORAC assay after DBD-plasma (40 V) and sonication (30 mins) treatment as compared to TT and untreated samples. Both emerging technologies significantly (p < 0.05) reduce the polyphenol oxidase and peroxidase activities, but the TT sample had the highest reduction. Moreover, the synergistic application of both technologies significantly reduced the E. coli/Coliform, aerobics, yeast and mold up to the 2 log reduction, but the TT sample had a complete reduction. DBD-plasma and sonication processing significantly decreased (p < 0.05) the particle size, reducing apparent viscosity (η) and consistency index (K); while increasing the flow behavior (n), leading to higher stability of wheat sprout juice. To assess the impact of emerging techniques on nutrient concentration, we used surface-enhance Raman spectroscopy (SERS) as an emerging method. Silver-coated gold nano-substrates were used to compare the nutritional concentration of wheat sprout juice treated with sonication, DBD-plasma, and TT-treated samples. Results showed sharp peaks for samples treated with DBD-plasma followed by sonication, untreated, and TT. The obtained results, improved quality of wheat sprout juice, and lower microbial and enzymatic loads were confirmed, showing the suitability of these sustainable processing techniques for food processing and further research.  相似文献   

18.
Herein, 1 wt% quinoa protein isolate (QPI) was exposed to sonication using a 20 kHz ultrasonicator equipped with a 6 mm horn (14.4 W, 10 mL, up to 15 min) or high hydrostatic pressure (HHP, up to 600 MPa, 15 min) treatments at pH 5, pH 7, and pH 9. The changes to physicochemical properties were probed by SDS-PAGE, FTIR, free sulfhydryl group (SH), surface hydrophobicity (H0), particle size and solubility. As revealed by SDS-PAGE, substantial amounts of 11S globulin participated in the formations of aggregates via SS bond under HHP, particularly at pH 7 and pH 9. However, protein profiles of QPI were not significantly affected by the sonication. Free SH groups and surface hydrophobicity were increased after the sonication treatment indicating protein unfolding and exposure of the embedded SH and/or hydrophobic groups. An opposite trend was observed in HHP treated samples, implying aggregation and reassociation of structures under HHP. HHP and sonication treatments induced a decrease in ordered secondary structures (random coil and β-turn) accompanied with an increase in disordered secondary structures (α-helix and β-sheet) as probed by FTIR. Finally, the sonication treatment induced a significant improvement in the solubility (up to ∼3 folds at pH 7 and ∼2.6 folds at pH 9) and a reduction in particle sizes (up to ∼3 folds at pH 7 and ∼4.4 folds at pH 9). However, HHP treatment (600 MPa) only slightly increased the solubility (∼1.6 folds at pH 7 and ∼1.2 folds at pH 9) and decreased the particle size (∼1.3 folds at pH 7 and ∼1.2 folds at pH 9). This study provides a direct comparison of the impacts of sonication and HHP treatment on QPI, which will enable to choose the appropriate processing methods to achieve tailored properties of QPI.  相似文献   

19.
The effect of ultrasound on the conformational and physicochemical properties of soy protein isolate hydrolysates (SPHs) was investigated. SPHs were prepared at hydrolysis times of 20 min, 60 min, and 180 min, then treated with ultrasound for 10 min, 20 min, and 30 min at a frequency of 20 kHz and output powers of 150 W and 450 W. The structural properties and antioxidant capacities of the aqueous layer of SPHs (ASPHs) after sonication were evaluated by Fourier-transform infrared spectroscopy (FTIR), intrinsic fluorescence, DPPH radical scavenging activity assays, and microscopy observations. Results obtained showed that ultrasound treatment significantly disrupted the peptide aggregates formed during protein hydrolysis. The protein solubility was significantly increased after sonication (by up to 18.33%), as did the percentage of proteins with MW < 1 kDa in ASPHs. The antioxidant capacity of ASPHs also increased, as measured by DPPH assay. FTIR analysis of ASPHs indicated that the protein secondary structures were different, with an increase in β-sheet and a decrease in α-helix and β-turn. Furthermore, the changes in fluorescence spectra of ASPHs showed the transition of protein tertiary structure with a greater exposure of Trp residues in the side chains. Scanning electron microscope (SEM) and atomic force microscope (AFM) observations of the morphological structure of ASPHs further confirmed the significant effect of sonication on disrupting peptide aggregates. In conclusion, ultrasound can be used as an efficient treatment to promote the solubility of protein hydrolysates.  相似文献   

20.
Increasing consumer awareness regarding the health benefits of different nutrients in food have led to the requirement of assessing the effect of food processing approaches on the quality attributes. The present work focuses on understanding the effects of novel approaches based on the use of ultrasound and ultraviolet irradiations on the nutritional quality of different fruit and vegetable juices (orange, sweet lime, carrot and spinach juices) and its comparison with the conventional thermal pasteurization operated at 80 °C for 10 min. The ultrasound sterilization parameters were maintained at ultrasound frequency of 20 kHz and power of 100 W with treatment time as 15 min. For the case of ultraviolet irradiations, 2 UVC lamps (254 nm) of 8 W were placed in parallel on either sides of the reactor. The treated juices were analyzed for total phenol content, antioxidant activity, vitamin C, carbohydrates etc. It has been established that ultrasound processed juice retained most of the nutrient components to higher extent in comparison to all the other techniques used in the work. Combination of ultrasound and ultraviolet irradiations used to achieve an effective decontamination of juices (recommended 5 log reduction of microorganisms) also retained nutrients to a higher level in comparison to the thermal method; however some losses were observed as compared to the use of only ultrasound which could be attributed to inefficient heat exchange in the combined approach. A scale up attempt was also made for treatment of spinach juice using ultrasonic reactors and analysis for quality attributes confirmed that the juice satisfied the criteria of required nutrient contents for 18 days shelf life trial in refrigerated storage conditions. The present work has clearly established the usefulness of ultrasound based treatment in maintaining the nutritional quality of beverages while giving enhanced shelf life as compared to the conventional approaches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号