首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Cavitation bubbles have been recognized as being essential to many applications of ultrasound. Temporal evolution and spatial distribution of cavitation bubble clouds induced by a focused ultrasound transducer of 1.2 MHz center frequency are investigated by high-speed photography. It is revealed that at a total acoustic power of 72 W the cavitation bubble cloud first emerges in the focal region where cavitation bubbles are observed to generate, grow, merge and collapse during the initial 600 μs. The bubble cloud then grows upward to the post-focal region, and finally becomes visible in the pre-focal region. The structure of the final bubble cloud is characterized by regional distribution of cavitation bubbles in the ultrasound field. The cavitation bubble cloud structure remains stable when the acoustic power is increased from 25 W to 107 W, but it changes to a more violent form when the acoustic power is further increased to 175 W.  相似文献   

2.
Hong Chen  Supin Wang 《Ultrasonics》2009,49(3):289-292
Cavitation bubble clouds generated near a tissue boundary by high-intensity focused ultrasound (HIFU) were studied using high-speed photography. In all, 171 image series were captured during the initial 100 ms of continuous HIFU exposure, which showed that cavitation bubble clouds at the tissue boundary organized into two structures - “cone-shape bubble cloud structure” recorded in 146 image series and “crown-shape bubble cloud structure” recorded in 18 image series. The remaining 7 image series showed the interchanging of these two structures. It was found that when cavitation bubbles first appeared at the tissue boundary, they developed to cone-shape bubble cloud. The cone-shape bubble cloud structure was characterized by a nearly fixed tip in front of the tissue boundary. When the cavitation bubbles initially appeared away from the tissue boundary they evolved into a crown-shape bubble cloud. Deformation of tissue boundary was shown in all the recorded image series.  相似文献   

3.
《Ultrasonics sonochemistry》2014,21(5):1696-1706
The generation and control of acoustic cavitation structure are a prerequisite for application of cavitation in the field of ultrasonic sonochemistry and ultrasonic cleaning. The generation and control of several typical acoustic cavitation structures (conical bubble structure, smoker, acoustic Lichtenberg figure, tailing bubble structure, jet-induced bubble structures) in a 20–50 kHz ultrasonic field are investigated. Cavitation bubbles tend to move along the direction of pressure drop in the region in front of radiating surface, which are the premise and the foundation of some strong acoustic cavitation structure formation. The nuclei source of above-mentioned acoustic cavitation structures is analyzed. The relationship and mutual transformation of these acoustic cavitation structures are discussed.  相似文献   

4.
The motion of particles of different properties and sizes in ALF ultrasonic cavitation structure is investigated experimentally with high-speed photography. Particles tend to transport along the bubble chain and move towards the focus repeatedly and predictably in ALF cavitation structures. Particles at the focus aggregate and separate alternately over time. The separation of particles mainly occurs in the expansion process of cavitation bubbles, while the movement and aggregation of particles mostly take place during the collapse stage. The directional transport of particles along the bubble chain of ALF cavitation cloud and the random aggregation and dispersion at the focus of ALF are all related to the cavitation bubbles attached to the particles. The directional transportation (predictable, repeatable and pipeline-free) and aggregation of particles in ALF cavitation clouds may be used in special occasions, for example, drug delivery and targeted therapy.  相似文献   

5.
硫酸中多气泡声致发光光谱   总被引:1,自引:0,他引:1       下载免费PDF全文
安宇 《应用声学》2013,32(3):205-211
非线性声波方程与气泡脉动方程联立, 可以描述声空化云中的声场以及任何一个气泡的脉动过程,为数值计算空化场问题提供了理论框架.计算的声压分布变化可以用来计算单气泡动力学,了解任何位置处气泡发光过程以及气泡内气体温度和压强变化等. 对浓硫酸中氙气泡空化云的计算定性符合实验观测, 只有钠原子线谱的计算结果相比实验观测有些出入.  相似文献   

6.
Histotripsy is a therapy that focuses short-duration, high-amplitude pulses of ultrasound to incite a localized cavitation cloud that mechanically breaks down tissue. To investigate the mechanism of cloud formation, high-speed photography was used to observe clouds generated during single histotripsy pulses. Pulses of 5-20 cycles duration were applied to a transparent tissue phantom by a 1-MHz spherically focused transducer. Clouds initiated from single cavitation bubbles that formed during the initial cycles of the pulse, and grew along the acoustic axis opposite the propagation direction. Based on these observations, we hypothesized that clouds form as a result of large negative pressure generated by the backscattering of shockwaves from a single bubble. The positive-pressure phase of the wave inverts upon scattering and superimposes on the incident negative-pressure phase to create this negative pressure and cavitation. The process repeats with each cycle of the incident wave, and the bubble cloud elongates toward the transducer. Finite-amplitude propagation distorts the incident wave such that the peak-positive pressure is much greater than the peak-negative pressure, which exaggerates the effect. The hypothesis was tested with two modified incident waves that maintained negative pressure but reduced the positive pressure amplitude. These waves suppressed cloud formation which supported the hypothesis.  相似文献   

7.
Boiling histotripsy is a High Intensity Focused Ultrasound (HIFU) technique which uses a number of short pulses with high acoustic pressures at the HIFU focus to induce mechanical tissue fractionation. In boiling histotripsy, two different types of acoustic cavitation contribute towards mechanical tissue destruction: a boiling vapour bubble and cavitation clouds. An understanding of the mechanisms underpinning these phenomena and their dynamics is therefore paramount to predicting and controlling the overall size of a lesion produced for a given boiling histotripsy exposure condition. A number of studies have shown the effects of shockwave heating in generating a boiling bubble at the HIFU focus and have studied its dynamics under boiling histotripsy insonation. However, not much is known about the subsequent production of cavitation clouds that form between the HIFU transducer and the boiling bubble. The main objective of the present study is to examine what causes this bubble cluster formation after the generation of a boiling vapour bubble. A numerical simulation of 2D nonlinear wave propagation with the presence of a bubble at the focus of a HIFU field was performed using the k-Wave MATLAB toolbox for time domain ultrasound simulations, which numerically solves the generalised Westervelt equation. The numerical results clearly demonstrate the appearance of the constructive interference of a backscattered shockwave by a bubble with incoming incident shockwaves. This interaction (i.e., the reflected and inverted peak positive phase from the bubble with the incoming incident rarefactional phase) can eventually induce a greater peak negative pressure field compared to that without the bubble at the HIFU focus. In addition, the backscattered peak negative pressure magnitude gradually increased from 17.4 MPa to 31.6 MPa when increasing the bubble size from 0.2 mm to 1.5 mm. The latter value is above the intrinsic cavitation threshold of –28 MPa in soft tissue. Our results suggest that the formation of a cavitation cloud in boiling histotripsy is a threshold effect which primarily depends (a) the size and location of a boiling bubble, and (b) the sum of the incident field and that scattered by a bubble.  相似文献   

8.
A passive cavitation detector (PCD) identifies cavitation events by sensing acoustic emissions generated by the collapse of bubbles. In this work, a dual passive cavitation detector (dual PCD), consisting of a pair of orthogonal confocal receivers, is described for use in shock wave lithotripsy. Cavitation events are detected by both receivers and can be localized to within 5 mm by the nature of the small intersecting volume of the focal areas of the two receivers in association with a coincidence detection algorithm. A calibration technique, based on the impulse response of the transducer, was employed to estimate radiated pressures at collapse near the bubble. Results are presented for the in vitro cavitation fields of both a clinical and a research electrohydraulic lithotripter. The measured lifetime of the primary growth-and-collapse of the cavitation bubbles increased from 180 to 420 microseconds as the power setting was increased from 12 to 24 kV. The measured lifetime compared well with calculations based on the Gilmore-Akulichev formulation for bubble dynamics. The radiated acoustic pressure 10 mm from the collapsing cavitation bubble was measured to vary from 4 to 16 MPa with increasing power setting; although the trends agreed with calculations, the predicted values were four times larger than measured values. The axial length of the cavitation field correlated well with the 6-dB region of the acoustic field. However, the width of the cavitation field (10 mm) was significantly narrower than the acoustic field (25 mm) as bubbles appeared to be drawn to the acoustic axis during the collapse. The dual PCD also detected signals from "rebounds," secondary and tertiary growth-and-collapse cycles. The measured rebound time did not agree with calculations from the single-bubble model. The rebounds could be fitted to a Rayleigh collapse model by considering the entire bubble cloud as an effective single bubble. The results from the dual PCD agreed well with images from high-speed photography. The results indicate that single-bubble theory is sufficient to model lithotripsy cavitation dynamics up to time of the main collapse, but that upon collapse bubble cloud dynamics becomes important.  相似文献   

9.
To understand the behaviour of systems containing clouds of bubbles (multibubble system) in real sonochemical reactors, a new diagnosis method, i.e., optical cavitation probe (OCP), has been proposed. When a laser beam is introduced into the cavitation bubble cloud, the scattered light intensity changes by the collective oscillation of cavitation bubbles. The frequency domain spectrum of the scattered light contains rich information on the cavitation bubble clouds, comparable with the acoustic emission spectra detected by a hydrophone. The significant merits of OCP, such as capability for spatially resolved, non-invasive measurement of the cavitation bubble clouds, robustness even in a violent cavitation field have been experimentally demonstrated.  相似文献   

10.
Liebler M  Dreyer T  Riedlinger RE 《Ultrasonics》2006,44(Z1):e319-e324
In medical applications of high intense focused ultrasound the mechanism of interaction between ultrasound waves and cavitation bubbles is responsible for several therapeutic effects as well as for undesired side effects. Based on a two-phase continuum approach for bubbly liquids, in this paper a numerical model is presented to simulate these interactions. The numerical results demonstrate the influence of the cavitation bubble cloud on ultrasound propagation. In the case of a lithotripter pulse an increased bubble density leads to significant changes in the tensile part of the pressure waveform. The calculations are verified by measurements with a fiber optical hydrophone and by experimental results of the bubble cloud dynamics.  相似文献   

11.
Observation of a cavitation cloud was performed using an off-axis laser holography system. The cavitation cloud contains an inverse U-shaped vortex cavitation surrounded by many small cavitation bubbles. The density of bubbles with radius larger than 35 μm is on the order of 103 bubbles/cm3. The bubble number distribution was determined from the observation and by counting individual bubbles in reconstructed holographic images of the cavitation cloud.  相似文献   

12.
The commonly used ultrasonic horn generates localized cavitation below its converging tip resulting in a dense bubble cloud near the tip and limiting diffusion of reactive components into the bubble cloud or reactive radicals out of the bubble cloud. To improve contact between reactive components, a novel ultrasonic horn design was developed based on the principles of the dynamic wave equation. The horn, driven at 20 kHz, has a multi-stepped design with a cone-shaped tip increasing the energy-emitting surface areas and creating multiple reactive zones. Through different physical and chemical experiments, performance of the horn was compared to a typical horn driven at 20 kHz. Hydrophone measurements showed high acoustic pressure areas around the horn neck and tip. Sonochemiluminescence experiments verified multiple cavitation zones consistent with hydrophone readings. Calorimetry and dosimetry results demonstrated a higher energy efficiency (31.3%) and a larger hydroxyl radical formation rate constant (0.36 μM min−1) compared to typical horns. In addition, the new horn degraded naphthalene faster than the typical horn tested. The characterization results demonstrate that the multi-stepped horn configuration has the potential to improve the performance of ultrasound as an advanced oxidation technology by increasing the cavitation zone in the solution.  相似文献   

13.
One of the main applications of ultrasonic melt treatment is the grain refinement of aluminium alloys. Among several suggested mechanisms, the fragmentation of primary intermetallics by acoustic cavitation is regarded as very efficient. However, the physical process causing this fragmentation has received little attention and is not yet well understood. In this study, we evaluate the mechanical properties of primary Al3Zr intermetallics by nano-indentation experiments and correlate those with in-situ high-speed imaging (of up to 1 Mfps) of their fragmentation process by laser-induced cavitation (single bubble) and by acoustic cavitation (cloud of bubbles) in water. Intermetallic crystals were chemically extracted from an Al-3 wt% Zr alloy matrix. Mechanical properties such as hardness, elastic modulus and fracture toughness of the extracted intermetallics were determined using a geometrically fixed Berkovich nano-diamond and cube corner indenter, under ambient temperature conditions. The studied crystals were then exposed to the two cavitation conditions mentioned. Results demonstrated for the first time that the governing fragmentation mechanism of the studied intermetallics was due to the emitted shock waves from the collapsing bubbles. The fragmentation caused by a single bubble collapse was found to be almost instantaneous. On the other hand, sono-fragmentation studies revealed that the intermetallic crystal initially underwent low cycle fatigue loading, followed by catastrophic brittle failure due to propagating shock waves. The observed fragmentation mechanism was supported by fracture mechanics and pressure measurements using a calibrated fibre optic hydrophone. Results showed that the acoustic pressures produced from shock wave emissions in the case of a single bubble collapse, and responsible for instantaneous fragmentation of the intermetallics, were in the range of 20–40 MPa. Whereas, the shock pressure generated from the acoustic cavitation cloud collapses surged up to 1.6 MPa inducing fatigue stresses within the crystal leading to eventual fragmentation.  相似文献   

14.
数值模拟两相汽蚀流动的新模型和算法   总被引:3,自引:1,他引:2  
李军  刘立军  丰镇平 《计算物理》2006,23(5):530-536
提出了数值模拟两相汽蚀流动现象的新汽蚀模型和算法.提出的汽蚀模型和算法耦合了考虑紊流粘性效应的Reynolds-Averaged Navier-Stokes方程求解方法,可以自动模拟空泡起始点、空泡长度和汽蚀空泡形状.在流场计算和界面修正的迭代计算过程中,跟踪并得到液相/气相界面.数值模拟了圆锥形圆柱体和半球形圆柱体在不同汽蚀系数下的汽蚀流动现象,得到了与实验值完全吻合的数值模拟结果,并且与已发表的数值研究结果进行了比较.计算结果表明提出的汽蚀模型和算法能够有效地模拟汽蚀流动中的气泡界面和气泡长度,汽蚀模型和算法的正确性和实用性得到了相应的验证.  相似文献   

15.
We have employed the large eddy simulation (LES) approach to investigate the cavitation noise characteristics of an unsteady cavitating flow around a NACA66 (National Advisory Committee for Aeronautics) hydrofoil by employing an Eulerian-Lagrangian based multiscale cavitation model. A volume of fluid (VOF) method simulates the large cavity, whereas a Lagrangian discrete bubble model (DBM) tracks the small bubbles. Meanwhile, noise is determined using the Ffowcs Williams-Hawkings equation (FW-H). Eulerian-Lagrangian analysis has shown that, in comparison to VOF, it is more effective in revealing microscopic characteristics of unsteady cavitating flows, including microscale bubbles, that are unresolvable around the cloud cavity, and their impact on the flow field. It is also evident that its evolution of cavitation features on the hydrofoil is more consistent with the experimental observations. The frequency of the maximum sound pressure level corresponds to the frequency of the main cavity shedding for the noise characteristics. Using the Eulerian-Lagrangian method to predict the noise signal, results show that the cavitation noise, generated by discrete bubbles due to their collapse, is mainly composed of high-frequency signals. In addition, the frequency of cavitation noise induced by discrete microbubbles is around 10 kHz. A typical characteristic of cavitation noise, including two intense pulses during the collapsing of the cloud cavity, is described, as well as the mechanisms that underlie these phenomena. The findings of this work provide for a fundamental understanding of cavitation and serve as a valuable reference for the design and intensification of hydrodynamic cavitation reactors.  相似文献   

16.
High intensity pulsed ultrasound can produce significant mechanical tissue fractionation with sharp boundaries ("histotripsy"). At a tissue-fluid interface, histotripsy produces clearly demarcated tissue erosion and the erosion efficiency depends on pulse parameters. Acoustic cavitation is believed to be the primary mechanism for the histotripsy process. To investigate the physical basis of the dependence of tissue erosion on pulse parameters, an optical method was used to monitor the effects of pulse parameters on the cavitating bubble cloud generated by histotripsy pulses at a tissue-water interface. The pulse parameters studied include pulse duration, peak rarefactional pressure, and pulse repetition frequency (PRF). Results show that the duration of growth and collapse (collapse cycle) of the bubble cloud increased with increasing pulse duration, peak rarefactional pressure, and PRF when the next pulse arrived after the collapse of the previous bubble cloud. When the PRF was too high such that the next pulse arrived before the collapse of the previous bubble cloud, only a portion of histotripsy pulses could effectively create and collapse the bubble cloud. The collapse cycle of the bubble cloud also increased with increasing gas concentration. These results may explain previous in vitro results on effects of pulse parameters on tissue erosion.  相似文献   

17.
Short, high-intensity ultrasound pulses have the ability to achieve localized, clearly demarcated erosion in soft tissue at a tissue-fluid interface. The primary mechanism for ultrasound tissue erosion is believed to be acoustic cavitation. To monitor the cavitating bubble cloud generated at a tissue-fluid interface, an optical attenuation method was used to record the intensity loss of transmitted light through bubbles. Optical attenuation was only detected when a bubble cloud was seen using high speed imaging. The light attenuation signals correlated well with a temporally changing acoustic backscatter which is an excellent indicator for tissue erosion. This correlation provides additional evidence that the cavitating bubble cloud is essential for ultrasound tissue erosion. The bubble cloud collapse cycle and bubble dissolution time were studied using the optical attenuation signals. The collapse cycle of the bubble cloud generated by a high intensity ultrasound pulse of 4-14 micros was approximately 40-300 micros depending on the acoustic parameters. The dissolution time of the residual bubbles was tens of ms long. This study of bubble dynamics may provide further insight into previous ultrasound tissue erosion results.  相似文献   

18.
沈壮志 《物理学报》2015,64(12):124702-124702
以水为工作介质, 考虑了液体的可压缩性, 研究了驻波声场中空化泡的运动特性, 模拟了驻波场中各位置处空化泡的运动状态以及相关参数对各位置处空化泡在主Bjerknes力作用下运动方向的影响. 结果表明: 驻波声场中, 空化泡的运动状态分为三个区域, 即在声压波腹附近空化泡做稳态空化, 在偏离波腹处空化泡做瞬态空化, 在声压波节附近, 空化泡在主Bjerknes 力作用下, 一直向声压波节处移动, 显示不发生空化现象; 驻波场中声压幅值增加有利于空化的发生, 但声压幅值增加到一定上限时, 压力波腹区域将排斥空化泡, 并驱赶空化泡向压力波节移动, 不利于空化现象的发生; 当声频率小于初始空化泡的共振频率时, 声频率越高, 由于主Bjerknes 力的作用将有更多的空化泡向声压波节移动, 不利于空化的发生, 尤其是驻波场液面的高度不应是声波波长的1/4; 当声频率一定时, 空化泡初始半径越大越有利于空化现象的发生, 但当空化泡的初始半径超过声频率的共振半径时, 由于主Bjerknes力的作用将有更多的空化泡向声压波节移动, 不利于空化的发生.  相似文献   

19.
Knowledge of the acoustic cavitation cloud would be useful for improving ultrasound reactor design. Among the characterisation techniques, few are adapted to bubble investigations in an intense ultrasound field. Some problems raised by these measurements result from interactions between the acoustic pressure wave and the measuring light wave. This paper reports the implementation of the laser diffraction technique to determine the size and volume concentration of bubbles generated by a dipping horn operating at 20 kHz. Measurements were performed with a Malvern 2600 instrument. The size distribution, deduced from the diffraction pattern scattered by the bubble cloud crossed by a laser beam, is disturbed by the acoustic pressure wave involving deviation of a light beam at low diffusion angles (acousto‐optic effect). A bubble size correction procedure based on the subtraction of the light energy due to the ultrasound wave is described. The size measurements, and thus the correction procedure, were validated by a second laser technique based on a different measuring principle: phase Doppler interferometry. The measurement reliability was further confirmed by an original application of laser diffraction based on measurements performed just after sonication. These three methods lead to a mean bubble size (Sauter mean diameter) of about 10 μm at a high ultrasound power input. Concerning the void fraction, only measurements achieved after sonication and by laser diffraction predict a correct estimation of this parameter.  相似文献   

20.
Due to the tunability in mass transfer, solvation and solubility, gas-expanded liquids show advantages over traditional organic solvents in many characteristics. Ultrasonication is a commonly used method to promote heat and mass transfer. The introduction of ultrasonic technology into the gas-expanded liquid system can promote the polymerization of polymer monomers, enhance extraction efficiency, and control the growth size of nanocrystals, etc. Although acoustic cavitation has been extensively explored in aqueous solutions, there are still few studies on cavitation in organic liquids, especially in gas-expanded liquid systems. In this article, the development of cavitation bubble cloud structure in CO2-expanded N, N-dimethylformamide (DMF) was observed by a high-speed camera, and the cavitation intensity was recorded using a spherical hydrophone. It was found that the magnitude of the transient cavitation energy was not only related to input power, but also closely related to CO2 content. The combination of ultrasound (causing a rapid alternation of gas solubility) and gas-expanded liquid system (causing a decrease in viscosity and surface tension of liquids) is expected to provide a perfect platform for high-speed mass transfer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号