首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tuberculosis is an infectious disease caused by the bacterium M. tuberculosis. The aim of this study was to investigate the bactericidal effect and underlying mechanisms of low-frequency and low-intensity ultrasound combined with levofloxacin treatment against M. smegmatis (a surrogate of M. tuberculosis). As part of this study, M. smegmatis was continuously irradiated with low frequency ultrasound (42 kHz) using several different doses whereby both intensity (0.138, 0.190 and 0.329 W/cm2) and exposure time (5, 15 and 20 min) were varied. Flow cytometric analyses revealed that the permeability of M. smegmatis increased following ultrasound exposure. The survival rate, structure and morphology of bacteria in the lower-dose (ISATA = 0.138 W/cm2 for 5 min) ultrasound group displayed no significant differences upon comparison with the untreated group. However, the survival rate of bacteria was significantly reduced and the bacterial structure was damaged in the higher-dose (ISATA = 0.329 W/cm2 for 20 min) ultrasound group. Ultrasound irradiation (0.138 W/cm2) was subsequently applied to M. smegmatis in combination with levofloxacin treatment for 5 min. The results demonstrated that the bactericidal effect of ultrasonic irradiation combined with levofloxacin is higher compared to ultrasound alone or levofloxacin alone.  相似文献   

2.
Decelerating effect of electric fields on silicon microhardness changes induced by low-intensity (I = 10.4 × 104 cm?2 s?1) β irradiation has been revealed. The threshold character of the electric field effect is found (the effect is absent at electric fields E < 350 V cm?1).  相似文献   

3.
In recent years, foodborne diseases caused by Escherichia coli are a major threat to the food industry and consumers. Antimicrobial peptides (AMPs) and ultrasound both have good inhibitory effects on E. coli. In this work, the mechanism of action and synergistic effect of an in silico predicted AMP, designated as TGH2 (AEFLREKLGDKCTDRHV), from the C-terminal sequence of Tegillarca granosa hemoglobin, combined with low-intensity ultrasound was explored. The minimal inhibitory concentration (MIC) of TGH2 on E. coli decreased by 4-fold to 31.25 μg/mL under 0.3 W/cm2 ultrasound treatment, while the time kill curve analysis showed that low-intensity ultrasound combined with peptide TGH2 had an enhanced synergistic bactericidal effect after 0.5 h. The permeability on E. coli cell membrane increased progressively during combined treatment with peptide TGH2 and low-intensity ultrasound, resulting in the leakage of intracellular solutes, as shown by transmission electron microscopy (TEM). Structural analysis using circular dichroism (CD) revealed that peptide TGH2 has an α-helical structure, showing a slight untwisting effect under 0.3 W/cm2 ultrasound treatment for 0.5 h. The findings here provide new insight into the potential application of ultrasound and AMPs combination in food preservation.  相似文献   

4.
Bromide sodalites doped with iron (0.75 mg/cm3) have been studied by the Mossbauer technique, before and after heat treatment in hydrogen atmosphere and after coloration by u.v. light and by electron bombardment. The measurements show that u.v. or electron irradiation causes Fe2+ ions to convert to Fe3+. The number of converted ions (? 1017/cm3 for u.v. irradiation, and 5 × 1017/cm3 for electron irradiation) agrees with the expected number of F centers estimated from optical measurements. The thermal recovery time at room temperature of the Fe3+ ions back to their Fe2+ state was found to be several months.  相似文献   

5.
Sonodynamic therapy (SDT) emerges as a promising non-invasive alternative for eradicating malignant tumours. However, its therapeutic efficacy remains limited due to the lack of sonosensitisers with high potency and biosafety. Previously, gold nanorods (AuNRs) have been extensively studied for their applications in photodynamic or photothermal cancer therapy, but their sonosensitising properties are largely unexplored. Here, we reported the applicability of alginate-coated AuNRs (AuNRsALG) with improved biocompatibility profiles as promising nanosonosensitisers for SDT for the first time. AuNRsALG were found stable under ultrasound irradiation (1.0 W/cm2, 5 min) and maintained structural integrity for 3 cycles of irradiation. The exposure of the AuNRsALG to ultrasound irradiation (1.0 W/cm2, 5 min) was shown to enhance the cavitation effect significantly and generate a 3 to 8-fold higher amount of singlet oxygen (1O2) than other reported commercial titanium dioxide nanosonosensitisers. AuNRsALG exerted dose-dependent sonotoxicity on human MDA-MB-231 breast cancer cells in vitro, with ∼ 81% cancer cell killing efficacy at a sub-nanomolar level (IC50 was 0.68 nM) predominantly through apoptosis. The protein expression analysis showed significant DNA damage and downregulation of anti-apoptotic Bcl-2, suggesting AuNRsALG induced cell death through the mitochondrial pathway. The addition of mannitol, a reactive oxygen species (ROS) scavenger, inhibited cancer-killing effect of AuNRsALG-mediated SDT, further verifying that the sonotoxicity of AuNRsALG is driven by the production of ROS. Overall, these results highlight the potential application of AuNRsALG as an effective nanosonosensitising agent in clinical settings.  相似文献   

6.
The aim of this study was to investigate the influence of light parameters on yeast cells. It has been proposed for many years that photodynamic therapy (PDT) can inactivate microbial cells. A number of photosensitizer and light sources were reported in different light parameters and in a range of dye concentrations. However, much more knowledge concerning the importance of fluence, fluence rate and exposure time are required for a better understanding of the photodynamic efficiency. Suspensions (106 CFU/mL) of Candida albicans, Candida krusei, and Cryptococcus neoformans var. grubii were used. Two fluence rates, 100 and 300 mW/cm2 were compared at 3, 6, and 9 min of irradiation, resulting fluences from 18 to 162 J/cm2. The light source was a laser emitting at λ = 660 nm with output power adjusted at 30 and 90 mW. As photosensitizer, one hundred-μM methylene blue was used. Temperature was monitored to verify possible heat effect and reactive oxygen species (ROS) formation was evaluated. The same fluence in different fluence rates showed dissimilar levels of inactivation on yeast cells as well as in ROS formation. In addition, the increase of the fluence rate showed an improvement on cell photoinactivation. PDT was efficient against yeast cells (6 log reduction), and no significant temperature increase was observed. Fluence per se should not be used as an isolate parameter to compare photoinactivation effects on yeast cells. The higher fluence rate was more effective than the lower one. Furthermore, an adequate duration of light exposure cannot be discarded.  相似文献   

7.
In this letter, indium–titanium–zinc–oxide thin-film transistors with zirconium oxide (ZrOx) gate dielectric were fabricated at room temperature. In the devices, an ultra-thin ZrOx layer was formed as the gate dielectric by sol–gel process followed by ultraviolet (UV) irradiation. The devices can be operated under a voltage of 4 V. Enhancement mode operations with a high field-effect mobility of 48.9 cm2/V s, a threshold voltage of 1.4 V, a subthreshold swing of 0.2 V/decade, and an on/off current ratio of 106 were realized. Our results demonstrate that UV-irradiated ZrOx dielectric is a promising gate dielectric candidate for high-performance oxide devices.  相似文献   

8.
3 MeV electron irradiation induced-defects in CuInSe2 (CIS) thin films have been investigated. Both of the carrier concentration and Hall mobility were decreased as the electron fluence exceeded 1×1017 cm−2. The carrier removal rate was estimated to be about 1 cm−1. To evaluate electron irradiation-induced defect, the electrical properties of CIS thin films before and after irradiation were investigated between 80 and 300 K. From the temperature dependence of the carrier concentration in non-irradiated thin films, we obtained ND=1.8×1017 cm−3, NA=1.7×1016 cm−3 and ED=18 meV from the SALS fitting to the experimental data on the basis of the charge balance equation. After irradiation, a new defect level was formed, and NT0=1.4×1017 cm−3 and ET=54 meV were also obtained from the same procedure. From the temperature dependence of Hall mobility, the ionized impurity density was discussed before and after the irradiation.  相似文献   

9.
The absolute intensities of the 8–12 μm bands from freon 11 (CFCl3) were measured at temperatures of 294 and 216°K. Intensities of the bands centered at 798, 847, 934, and 1082 cm-1 are all observed to depend on temperature. The temperature dependence for the 847 and 1082 cm-1 fundamental regions is attributed to underlying hot bands; for the ν2 + ν5 combination band (934 cm-1), the observed temperature dependence is in close agreement with theoretical prediction. The implication of these results on atmospheric i.r. remote-sensing is briefly discussed.  相似文献   

10.
The surface modification of Cd1−xMnxTe (x = 0-0.3) crystal wafers under pulsed laser irradiation has been studied. The samples were irradiated by a Q-switched ruby laser with pulse duration of 80 ns. Optical diagnostics of laser-induced thermal processes were carried out by means of time-resolved reflectivity measurements at wavelengths 0.53 and 1.06 μm. Laser irradiation energy density, E varied in the range of 0.1-0.6 J/cm2. Morphology of irradiated surface was studied using scanning electron microscopy. The energy density whereby the sample surface starts to melt, depends on Mn content and is equal to 0.12-0.14 J/cm2 for x ≤ 0.2, in the case of x = 0.3 this value is about 0.35 J/cm2. The higher Mn content leads to higher melt duration. The morphology of laser irradiated surface changes from a weakly modified surface to a single crystal strained one, with an increase in E. Under irradiation with E in the range of 0.21-0.25 J/cm2, the oriented filamentary crystallization is observed. The Te inclusions on the surface are revealed after the irradiation of samples with small content of Mn.  相似文献   

11.
The effect of low-flux (I ~ 1.8 × 105 cm?2 s?1) β irradiation on the process of the delamination of thin copper films (with a thickness of ~100 nm) from a silicon substrate under indentation by a Berkovich pyramid is studied. It is revealed that irradiation with a fluence of F = 3.24 × 1010 cm?2 leads to an increase in the perimeter and area of the copper-film delaminations formed upon penetration of the indenter. This indicates a β-induced reduction in adhesion in the Cu/Si structure.  相似文献   

12.
The static electric quadrupole interaction of181Ta and178Hf in polycrystalline barium and lead titanate at the site of titanium has been measured using time differential PAC and the Mössbauer effect. The electric field gradients (EFG) at room temperature at the181Ta nucleus are ¦V zz¦=(3.6±0.2)·1017V/cm2 in BaTiO3 and ¦V zz¦=(14.6±0.6)·1017 V/cm2 in PbTiO3. The temperature dependence of the quadrupole interaction has been studied giving the following EFG values: ¦V zz¦=(2.4±0.2)·1017 V/cm2 in the monoclinic and ¦V zz¦=(1.1±0.3)·1017 V/cm2 in the rhomboedral phase of BaTiO3, and ¦V zz¦=(15.7±0.6)·1017 V/cm2 for181Ta/PbTiO 3 at 77 °K. The EFG of178Hf in PbTiO3 has been derived from a Mössbauer effect experiment to beV zz=+(10.7±0.5)·1017 V/cm2. The results are compared with EFG's calculated in a point charge model and with experimental EFG's measured at44Sc and57Fe in the same titanates by other authors. Contributions of covalent bonds to the effective EFG's in perovskit crystals are discussed.  相似文献   

13.
The superatomic structure of synthetic quartz single crystals with dislocation densities ρ = 54 and 570 cm?2 was studied in the initial state and after irradiation with fast neutrons with energies E n > 0.1 MeV in a WWRM reactor (St. Petersburg Nuclear Physics Institute) in the fluence range F = 0.2 × 1017?5.0 × 1018 neutrons/cm2. Weak irradiation with F = 0.2 × 1017 neutrons/cm2 causes only slight structural changes, whereas appreciable generation of defects with radii of gyration r g ~ 1–2 nm and R G ~ 40–50 nm occurs at F = 7.7 × 1017?5.0 × 1018 neutrons/cm2. As the fluence increases further, the number and volume fraction of point defects, as well as extended (channels ~2 nm in radius) and globular (amorphous phase nuclei) defects, increase.  相似文献   

14.
N-type GaAs doped with sulphur (2.8 × 1018 cm-3) has been subjected to 2 MeV electron irradiation in stages at room temperature and examined by the EPR technique. When the free carrier absorption is first eliminated no EPR signal is detected. After further irradiation, the spectrum of the As anti-site defect appears, grows and subsequently saturates at a concentration of about 1018 cm-3. The saturation concentration is about one third of [n] in most samples. The defects are stable on annealing to 500°C but are not observed in various irradiated p-type samples. It is suggested that grown-in defects such as [VGa-AsGa-VGa] capture Ga interstitials during the irradiation and are thereby converted to the simpler anti-site defect.  相似文献   

15.
The IR spectra of OH-compensated point defects in MgO (and CaO) single crystals of various purity grades were reinvestigated. Three distinct groups of IR bands appear in the O-H stretching region: A, B and C around 3550 cm?1 (3650 cm?1), 3300 cm?1 (3450 cm?1) and 3700cm?1 (3750cm?1). They are assigned as follows: band A to the fully compensated, band B to the half compensated and band C to the overcompensated cation vacancies, [O?V”catH?]×, [O?V”cat], and [O?O?V”catH?]?, respectively.Upon cooling to 80 K the band A shows a complex behavior partly due to the formation of Ha molecules by charge transfer and concommittant O? formation: [? (H2)”cat?]×. The O? represent defect electrons or positive holes in the O2? matrix.Bands A and B show a characteristic multiplet splitting which is caused by local lattice strains coming from carbon atoms on near-by interstitial position. The intensity ratios between the multiplet components remain constant regardless of temperature pretreatments up to 1470 K, but strong variations of the integral intensities are observed. These are caused by the highly mobile C atoms entering and leaving reversibly the cation vacancy sites as a function of temperature and of the quenching speed. When the C atoms push the H2 molecules onto interstitial sites, an H-H stretching signal appears around 4150cm?1.  相似文献   

16.
Metal organic chemical vapor deposition (MOCVD) has been used to grow vanadium-doped GaN (GaN:V) on c-sapphire substrate using VCl4 as the V source. The as-grown GaN:V exhibited a saturated magnetic moment (Ms) of 0.28 emu/cm3 at room temperature. Upon high-temperature annealing treatment at 1100 °C for 7 min under N2 ambient, the Ms of the GaN:V increased by 39.28% to 0.39 emu/cm3. We found that rapid thermal annealing leads to a remarkable increase in surface roughness of the V-doped GaN as well as the electron concentration. The annealing also leads to a significant increase in the Curie temperature (TC), we have identified Curie temperatures about 350 K concluded from the difference between the field-cooled and zero-field-cooled magnetizations. Structure characterization by x-ray diffraction indicated that the ferromagnetic properties are not a result of secondary magnetic phases.  相似文献   

17.
The electric field gradient eq at Os nuclei in Os and Re single crystals has been determined by Mössbauer transmission experiments with the 137 keV resonance in 186Os as -4.5 (3) × 1017 V/cm2 and - 3.8 (3) × 1017 V/cm2, respectively.  相似文献   

18.
研究了埋氧注氮对部分耗尽SOI PMOSFET顶栅氧的总剂量辐射硬度所造成的影响。注入埋氧的氮剂量分别是8×1015 , 2×1016 和1×1017cm-2。实验结果表明,辐照前,晶体管的阈值电压随氮注入剂量的增加向负方向漂移。在正2V的栅偏压下,经5×105 rad(Si)的总剂量辐照后,同埋氧未注氮的晶体管相比,埋氧注氮剂量为8×1015 cm-2的晶体管呈现出了较小的阈值电压漂移量。然而,当注氮剂量高达2×1016 和 1×1017cm-2时,所测大多数晶体管的顶栅氧却由于5×105 rad(Si)的总剂量辐照而受到了严重损伤。另外,对于顶栅氧严重受损的晶体管,其体-漏结也受到了损伤。所有的实验结果可通过氮注入过程中对顶硅的晶格损伤来解释。  相似文献   

19.
Diamond-like carbon (DLC) films can be used in a numerous industrial applications, including biomedical coatings with bactericidal properties. It has been demonstrated that DLC surface can be modified with oxygen plasma treatment. The purpose of this paper is to study the wettability and bactericidal activity of oxygen plasma-treated DLC films produced by plasma enhanced chemical vapor deposition technique. The sp3/sp2 ratio increased after the treatment due to the increase in the generation of the unstable carbon bonds caused by the energetic ions, especially O-H group. The treated DLC surface becomes superhydrophilic and rougher, although the roughness values are still lower. DLC antibacterial activity did not increased with plasma treatment. Therefore, oxygen plasma treatment can be used to make superhydrophilic DLC but not to increase its bactericidal properties.  相似文献   

20.
The nanostructure (nanoparticle distribution) of ferritic-martensitic 12%-chromium steels EK-181 (Fe-12Cr-2W-V-Ta-B) and ChS-139 (Fe-12Cr-2W-V-Ta-B-Nb-Mo) subjected to different modes of mechanical and heat treatments and neutron irradiation has been investigated using small-angle neutron scattering. The samples have been studied in the initial state and after neutron irradiation (IVV-2M reactor) at a temperature of 80°C with fluences of 1018, 1019, and 5 × 1019 cm?2 (E ≥ 0.1 MeV). The nanostructure of the steels is characterized by precipitations of nanoparticles with two characteristic sizes of 1.0–1.5 and 7–8 nm. The dependence of the nanostructure parameters on the composition of the steels and on the conditions of heat treatment and irradiation has been discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号