首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Three-dimensional enriched finite elements are used to compute mixed-mode stress intensity factors (SIFs) for three-dimensional cracks in elastic functionally graded materials (FGMs) that are subject to general mixed-mode loading and constraint conditions. The method, which advantageously does not require special mesh configuration/modifications and post-processing of finite element results, is an enhancement of previous developments applied so far on isotropic homogeneous and isotropic interface cracks. The spatial variation of FGM material properties is taken into account at the level of element integration points. To validate the developed method, two- and three-dimensional mixed-mode fracture problems are selected from the literature for comparison. Two-dimensional cases include: inclined central crack in a large FGM medium under uniform tensile strain and stress loadings, a slanted crack in a finite-size FGM plate under exponentially varying tensile stress loading and an edge crack in a finite-size plate under shear traction load. The three-dimensional example models a deflected surface crack in a finite-size FGM plate under uniform tensile stress loading. Comparisons between current results and those from analytical and other numerical methods yield good agreement. Thus, it is concluded that the developed three-dimensional enriched finite elements are capable of accurately computing mixed-mode fracture parameters for cracks in FGMs.  相似文献   

2.
The effects of combining functionally graded materials (FGMs) of different inhomogeneous property gradients on the mode-3 propagation characteristics of an interfacial crack are numerically investigated. Spontaneous interfacial crack propagation simulations were performed using the newly developed spectral scheme. The numerical scheme derived and implemented in the present work can efficiently simulate planar crack propagation along functionally graded bimaterial interfaces. The material property inhomogeneity was assumed to be in the direction normal to the interface. Various bimaterial combinations were simulated by varying the material property inhomogeneity length scale. Our parametric study showed that the inclusion of a softening type FGM in the bimaterial system leads to a reduction in the fracture resistance indicated by the increase in crack propagation velocity and power absorbed. An opposite trend of increased fracture resistance was predicted when a hardening material was included in the bimaterial system. The cohesive tractions and crack opening displacements were altered due to the material property inhomogeneity, but the stresses ahead of the cohesive zone remained unaffected.  相似文献   

3.
Mixed-mode fracture problems of orthotropic functionally graded materials (FGMs) are examined under mechanical and thermal loading conditions. In the case of mechanical loading, an embedded crack in an orthotropic FGM layer is considered. The crack is assumed to be loaded by arbitrary normal and shear tractions that are applied to its surfaces. An analytical solution based on the singular integral equations and a numerical approach based on the enriched finite elements are developed to evaluate the mixed-mode stress intensity factors and the energy release rate under the given mechanical loading conditions. The use of this dual approach methodology allowed the verifications of both methods leading to a highly accurate numerical predictive capability to assess the effects of material orthotropy and nonhomogeneity constants on the crack tip parameters. In the case of thermal loading, the response of periodic cracks in an orthotropic FGM layer subjected to transient thermal stresses is examined by means of the developed enriched finite element method. The results presented for the thermally loaded layer illustrate the influences of the material property gradation profiles and crack periodicity on the transient fracture mechanics parameters.  相似文献   

4.
The experimental efforts towards understanding the fracture behavior of continuously graded Functionally Graded Materials (FGMs) using full-field optical methods are reviewed. Both quasi-static and dynamic fracture investigations involving mode-I and -II conditions are presented. FGM configurations with crack planes perpendicular to, parallel to, and inclined to the direction of compositional gradation are discussed. Different strategies adopted by various investigators to develop polymer-based FGM systems for experimental mechanics studies are also described in this overview. Major theoretical developments that have predated and paralleled the experimental studies have been presented as well. Finally, the paper notes a few potential new directions where further contributions are possible.  相似文献   

5.
数学网格和物理网格分离的有限单元法(I):基本理论   总被引:5,自引:4,他引:1  
常规有限单元法在复杂边界问题的网格剖分、可移动边界和非连续变形问题的数值模拟等方面存在困难.本文将常规的有限单元分离为几何上相互独立的数学单元和物理单元,基于数学单元构造近似函数,引入位移模式关联法则以确定物理单元的位移模式,提出了在现有有限单元法框架内、基于数学网格和物理网格分离的强化有限单元法(FEM++).与常规有限单元法(SFEM)比较表明,强化有限单元法不仅很好地克服了常规有限单元法网格剖分上的困难,而且提供了一条更简便、更自然的分析移动边界问题和非连续变形问题的新途径.最后,通过数值算例验证了强化有限单元法的适用性和有效性.  相似文献   

6.
强化有限单元法将物理网格与数学网格分离开来,可以方便地描述非连续变形;粘聚区域模型是模拟断裂过程区作用最简单有效的方法,且可以避免裂纹尖端的应力奇异性.本文以平面问题为例,将强化有限单元法与粘聚区域模型相结合,利用富集数学节点描述任意粘聚裂纹扩展过程中的非连续变形问题,提出了裂纹扩展过程中数学节点富集和数学单元定义的方法.本文还导出了与平面4~8节点平面等参单元对应的8~16节点粘聚裂纹单元列武.最后,通过三点弯梁的裂纹扩展过程模拟验证了本文提出的粘聚裂纹扩展模拟方法的有效性.  相似文献   

7.
In this investigation the fracture behavior of functionally graded materials (FGMs) was studied by means of experiments carried out on model polymer-based FGMs. Model graded materials were manufactured by selective ultraviolet irradiation of ECO [poly(ethylene carbon monoxide)], a photo-sensitive ductile copolymer that becomes more brittle and stiffer under exposure to ultraviolet light. The mechanical response of the graded material was characterized using uniaxial tensile tests. Single edge notched tension graded ECO specimens possessing different spatial variations of Young’s modulus, failure stress and failure strain were tested under remote opening loading. A full-field digital image correlation technique was used to measure in real-time the displacement field around the crack tip while it propagated through the graded material. The measured displacement field was then used to extract fracture parameters such as stress intensity factor and T-stress, and thus construct resistance curves for crack growth in the FGMs. For this loading configuration it was found that the nonsingular T-stress term in the asymptotic expansion for stresses needs to be accounted for in order to accurately measure the fracture resistance in FGMs. In addition, the influence of local failure properties (i.e., failure stress and failure strain) on crack growth resistance was investigated in detail. It was found that depending on the combined effects of the spatial variation of these two failure parameters, regardless of the spatial variation of the Young’s modulus, the FGM fracture resistance can either increase, decrease or remain constant with continued crack growth.  相似文献   

8.
压电复合材料粘接界面断裂有限元模拟   总被引:1,自引:1,他引:0  
根据数字化FRMM(Fix-Ratio Mix-Mode)断裂试验,得到了压电复合材料试件的断裂韧性和位移及应变场。本文在试验的基础上,通过非线性有限元软件ABAQUS及用户子程序UMAT进行了模拟分析,采用基于损伤力学的粘聚区模型(CZM)对压电复合材料界面的起裂和脱胶扩展进行了分析,并与VCCT方法进行了比较。计算得到的荷载位移曲线更接近于试验结果,但在裂纹扩展路径上的吻合需要对粘聚区法则进一步修正。通过进一步对CZM参数进行分析,表明界面粘结强度和界面刚度对计算结果的影响很大。研究结果表明,粘聚区模型可以很好地表征压电复合材料弱粘接界面脱胶断裂问题。  相似文献   

9.
The present study examines the crack problems in a functionally graded material (FGM) whose upper and bottom surfaces are fully bonded with dissimilar homogeneous materials. A so-called generalized Kelvin solution based boundary element method is used in the numerical examination. The multi-region method and the eight-node traction-singular boundary elements are used for the crack evaluation. The layer discretization technique is utilized to approximate the depth material non-homogeneity of the FGM layer. The proposed method can deal with any depth variations in both the shear modulus and the Poisson ratio of the FGMs. Results of the present analysis are compared very well with the exact analytical solutions available in the literature, which demonstrates that the proposed method can accurately evaluate the stress intensity factors (SIFs) for cracks in FGMs. The paper further evaluates the effect of the functionally graded variations in the Poisson ratio on the stress intensity factors. The paper also assesses the elliptical cracks in the FGM system. The paper presents the influence of both the non-homogeneity and the thickness of the FGM layer on the three SIFs associated with the elliptical cracks.  相似文献   

10.
The work deals with the development of an effective numerical tool in the form of pseudospectral method for wave propagation analysis in anisotropic and inhomogeneous structures. Chebyshev polynomials are used as basis functions and Chebyshev–Gauss–Lobatto points are used as grid points. The formulation is implemented in the same way as conventional finite element method. The element is tested successfully on a variety of problems involving isotropic, orthotropic and functionally graded material (FGM) structures. The formulation is validated by performing static, free vibration and wave propagation analysis. The accuracy of the element in predicting stresses is compared with conventional finite elements. Free vibration analysis is carried out on composite and FGM beams and the computational resources saved in each case are presented. Wave propagation analysis is carried out using the element on anisotropic and inhomogeneous beams and layer structures. Wave propagation in thin double bounded media over long propagating distances is studied. Finally, a study on scattering of waves due to embedded horizontal and vertical cracks is carried out, where the effectiveness of modulated pulse in detecting small cracks in composites and FGMs has been demonstrated.  相似文献   

11.
A detailed analytical and experimental investigation is presented to understand the dynamic fracture behavior of functionally graded materials (FGMs) under mode I and mixed mode loading conditions. Crack-tip stress, strain and displacement fields for a mixed mode crack propagating at an angle from the direction of property gradation were obtained through an asymptotic analysis coupled with a displacement potential approach. This was followed by a comprehensive series of experiments to gain further insight into the behavior of propagating cracks in FGMs. Dynamic photoelasticity coupled with high-speed photography was used to obtain crack tip velocities and dynamic stress fields around the propagating cracks. Birefringent coatings were used to conduct the photoelastic study due to the opaqueness of the FGMs. Dynamic fracture experiments were performed using different specimen geometries to develop a dynamic constitutive fracture relationship between the mode I dynamic stress intensity factor (K ID ) and crack-tip velocity ( ) for FGMs with the crack moving in the direction of increasing fracture toughness. A similar -K ID relation was also obtained for matrix material (polyester) for comparison purposes. The results obtained show that crack propagation velocities in FGMs were about 80% higher than the polyester matrix. Crack arrest toughness was found to be about 10% lower than the value of local fracture toughness in FGMs.  相似文献   

12.
The thermal fracture of a bimaterial consisting of a homogeneous material and a functionally graded material (FGM) with a system of internal cracks and an interface crack is investigated. The bimaterial is subjected to a heat flux. The thermal properties of FGM are assumed to be continues functions of the thickness coordinate, while the elastic properties are constants. The method of the solution is based on the singular integral equations. For a special case where the interface crack is much larger than the internal cracks in the FGM the asymptotic analytical solution of the problem is obtained as series in a small parameter (the ratio between sizes of the internal and interface crack) and the thermal stress intensity factors (TSIFs) are derived as functions of geometry of the problem and material characteristics. A parametric analysis of the effects of the location and orientation of the cracks and of the inhomogeneity parameter of FGM’s thermal conductivity on the TSIFs is performed. The results are applicable to such kinds FGMs as ceramic/ceramic FGMs, e.g., TiC/SiC, MoSi2/Al2O3 and MoSi2/SiC, and also some ceramic/metal FGMs.  相似文献   

13.
In this paper, the wave propagation and dynamic response of the rectangular FGM plates with completed clamped supports under impulse load are analyzed. The effective material properties of functionally graded materials (FGMs) for the plate are assumed to vary continuously through the plate thickness and be distributed according to a volume fraction power law along the plate thickness. Considering the effects of transverse shear deformation and rotary inertia, the governing equations of the wave propagation in the functionally graded plate are derived by using the Hamilton’s principle. A complete discussion of dispersion of the FGM plates is given. Using the dispersion relation and integral transforms, exact integral solutions for the FGM plates under impulse load are obtained. The influence of volume fraction distributions on wave propagation and dynamic response of the FGM plates is analyzed.  相似文献   

14.
The dynamic behavior of smoothly graded heterogeneous materials is investigated using the finite element method. The global variation of material properties (e.g., Young’s modulus, Poisson’s ratio and mass density) is treated at the element level using a generalized isoparametric formulation. Three classes of examples are presented to illustrate this approach and to investigate the influence of material inhomogeneity on the characteristics of wave propagation pattern and stress redistribution. First, a cantilever beam example is presented for verification purposes. Emphasis is placed on the comparison of numerical results with analytical ones, as well as modal analysis for beams with different material gradation profiles. Second, wave propagation patterns are explored for a fixed-free slender bar considering homogeneous, bi-material, tri-layered and smoothly graded materials (steel/alumina), which also provide further verification of the numerical procedures. Comparison of stress histories in these samples indicates that the smooth transition of material gradation considerably alleviates the stress discontinuity in the bi-material system (with sharp interface). Third, a three-point-bending epoxy/glass graded beam specimen is investigated for validation purposes. The beam is graded along the height direction. Stress evolution history at a location of interest is analyzed in detail, which not only reveals the dependence of stress evolution on material gradation direction, but also provides information predictive of potential material failure time for graded beams with different material gradation profiles. Jointly, these three classes of examples provide proper verification and validation for the present numerical techniques.  相似文献   

15.
The accuracy of an adopted cohesive zone model (CZM) can affect the simulated fracture response significantly. The CZM has been usually obtained using global experimental response, e.g., load versus either crack opening displacement or load-line displacement. Apparently, deduction of a local material property from a global response does not provide full confidence of the adopted model. The difficulties are: (1) fundamentally, stress cannot be measured directly and the cohesive stress distribution is non-uniform; (2) accurate measurement of the full crack profile (crack opening displacement at every point) is experimentally difficult to obtain. An attractive feature of digital image correlation (DIC) is that it allows relatively accurate measurement of the whole displacement field on a flat surface. It has been utilized to measure the mode I traction-separation relation. A hybrid inverse method based on combined use of DIC and finite element method is used in this study to compute the cohesive properties of a ductile adhesive, Devcon Plastic Welder II, and a quasi-brittle plastic, G-10/FR4 Garolite. Fracture tests were conducted on single edge-notched beam specimens (SENB) under four-point bending. A full-field DIC algorithm was employed to compute the smooth and continuous displacement field, which is then used as input to a finite element model for inverse analysis through an optimization procedure. The unknown CZM is constructed using a flexible B-spline without any “a priori” assumption on the shape. The inversely computed CZMs for both materials yield consistent results. Finally, the computed CZMs are verified through fracture simulation, which shows good experimental agreement.  相似文献   

16.
The interaction integral is an accurate and robust scheme for evaluating mixed-mode stress intensity factors. This paper extends the concept to orthotropic functionally graded materials and addresses fracture mechanics problems with arbitrarily oriented straight and/or curved cracks. The gradation of orthotropic material properties are smooth functions of spatial coordinates, which are integrated into the element stiffness matrix using the so-called “generalized isoparametric formulation”. The types of orthotropic material gradation considered include exponential, radial, and hyperbolic-tangent functions. Stress intensity factors for mode I and mixed-mode two-dimensional problems are evaluated by means of the interaction integral and the finite element method. Extensive computational experiments have been performed to validate the proposed formulation. The accuracy of numerical results is discussed by comparison with available analytical, semi-analytical, or numerical solutions.  相似文献   

17.
Crack-tip stress fields for a stationary crack along or inclined to the direction of property gradation in functionally graded materials (FGMs) are obtained through an asymptotic analysis coupled with Westergaard’s stress function approach. The elastic modulus of the FGM is assumed to vary linearly along the gradation direction. The first six terms for a crack along the direction of property variation and first four terms for a crack inclined to the direction of property variation in the expansion of the stress field are derived to explicitly bring out the influence of nonhomogeneity on the structure of the stress field. Using these stress fields, contours of constant maximum shear stress and constant out of plane displacement are generated and the effect of inclination of property gradation direction on these contours is discussed. The strain energy density criterion is applied to obtain critical conditions for crack initiation and the effect of property gradation is discussed. It is shown that the materials with varying properties can offer more resistance to crack propagation and will suppress crack growth in some situations.  相似文献   

18.
A three-dimensional enriched finite-element methodology is presented to compute stress intensity factors for three-dimensional cracks contained in functionally graded materials (FGMs). A general-purpose 3D finite-element based fracture analysis program, FRAC3D, is enhanced to include this capability. First, using available solutions from the literature, comparisons have been made in terms of stresses under different loading conditions, such as uniform tensile, bending and thermal loads. Mesh refinement studies are also performed. The fracture solutions are obtained for edge cracks in an FGM strip and surface cracks in a finite-thickness FGM plate and compared with existing solutions in the literature. Further analyses are performed to study the behavior of stress intensity factor near the free surface where crack front terminates. It is shown that three-dimensional enriched finite elements provide accurate and efficient fracture solutions for three-dimensional cracks contained in functionally graded materials.  相似文献   

19.
Anti-plane dynamic fracture analysis is presented for functionally graded materials (FGM) with arbitrary spatial variations of material properties. The FGM with the material properties varying continuously in an arbitrary manner is modeled as a multi-layered medium with the elastic modulus and mass density varying linearly in each sub-layer and continuous at the interfaces between two adjacent sub-layers. With this linearly inhomogeneous multi-layered model, the problem of a crack in a graded interfacial zone bonded to two homogeneous half-spaces or in a coating bonded to a homogeneous half-space subjected to the anti-plane shear impact load is investigated. Laplace and Fourier transforms and transfer matrix are applied to reduce the associated mixed boundary value problem to a Cauchy singular integral equation which is solved numerically in the Laplace transformed domain. The dynamic stress intensity factors (DSIF) are obtained by using the numerical technique of Laplace inversion.  相似文献   

20.
Transient thermal dynamic analysis of stationary cracks in functionally graded piezoelectric materials (FGPMs) based on the extended finite element method (X-FEM) is presented. Both heating and cooling shocks are considered. The material properties are supposed to vary exponentially along specific direction while the crack-faces are assumed to be adiabatic and electrically impermeable. A dynamic X-FEM model is developed in which both Crank–Nicolson and Newmark time integration methods are used for calculating transient responses of thermal and electromechanical fields respectively. The generalized dynamic intensity factors for the thermal stresses and electrical displacements are extracted by using the interaction integral. The accuracy of the developed approach is verified numerically by comparing the calculated results with reference solutions. Numerical examples with mixed-mode crack problems are analyzed. The effects of the crack-length, poling direction, material gradation, etc. on the dynamic intensity factors are investigated. It shows that the transient dynamic crack behaviors under the cooling shock differ from those under the heating shock. The influence of the thermal shock loading on the dynamic intensity factors is significant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号