首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
An acoustic impedance pump is comprised of a compressible section coupled at both ends to sections of different acoustic impedances. Liquid can be pumped from one end to another if the compressible section is actuated at certain locations. This paper presents an analytical model on the acoustic pumping effect in microchannels. A one-dimensional wave equation is developed for acoustic pressures in the compressible section, taking into account the actuations as acoustic source terms. The solution for the acoustic pressure is a set of standing waves established inside the compressible section, corresponding to the actuations. The pumping effect is attributed to the second-order terms of the acoustic pressures. Two control parameters are identified. One is the resonance frequency associated with the sound wave speed and length of the compressible section, and the other is the damping factor. The analytical results are compared with the experimental data, and a qualitative agreement is observed in terms of frequency characteristics of the pumping pressure.  相似文献   

2.
Acoustic force model for the fluid flow under standing waves   总被引:1,自引:0,他引:1  
An acoustic Strouhal number is introduced to demonstrate that the viscosity of fluid can be ignored in the process of sound propagation and acoustic streaming is independent on the frequency of the acoustic wave. Furthermore, acoustic force based on the periodic velocity fluctuation caused by standing acoustic wave is introduced into Navier–Stokes equation in order to describe the fluid flow in the acoustic boundary layer. The numerical results show that the predicted results are consistent with the analytic solution. And the effect of the nonlinear terms cannot be ignored so the analytic solution derived by boundary-velocity condition is only an approximation for acoustic streaming.  相似文献   

3.
E. Momoniat   《Physics letters. A》2008,372(22):4041-4044
A Fourier point source solution modelling the effect of an impulse on a viscoelastic fluid of second-grade is investigated. By examining the second-moment of a Fourier point source solution we show that for Dt1, where D=ν/ for ν the kinematic viscosity, a viscoelastic parameter and t the time; the fluid undergoes superdiffusion indicating the dominance of the fluids viscoelastic properties. For Dt1 the fluid undergoes classical diffusion indicating that the viscous properties of the fluid are dominating.  相似文献   

4.
In droplet-based microfluidic platforms, precise separation of microscale droplets of different chemical composition is increasingly necessary for high-throughput combinatorial chemistry in drug discovery and screening assays. A variety of droplet sorting methods have been proposed, in which droplets of the same kind are translocated. However, there has been relatively less effort in developing techniques to separate the uniform-sized droplets of different chemical composition. Most of the previous droplet sorting or separation techniques either rely on the droplet size for the separation marker or adopt on-demand application of a force field for the droplet sorting or separation. The existing droplet microfluidic separation techniques based on the in-droplet chemical composition are still in infancy because of the technical difficulties. In this study, we propose an acoustofluidic method to simultaneously separate microscale droplets of the same volume and dissimilar acoustic impedance using ultrasonic surface acoustic wave (SAW)-induced acoustic radiation force (ARF). For extensive investigation on the SAW-induced ARF acting on both cylindrical and spherical droplets, we first performed a set of the droplet sorting experiments under varying conditions of acoustic impedance of the dispersed phase fluid, droplet velocity, and wave amplitude. Moreover, for elucidation of the underlying physics, a new dimensionless number ARD was introduced, which was defined as the ratio of the ARF to the drag force acting on the droplets. The experimental results were comparatively analyzed by using a ray acoustics approach and found to be in good agreement with the theoretical estimation. Based on the findings, we successfully demonstrated the simultaneous separation of uniform-sized droplets of the different acoustic impedance under continuous application of the acoustic field in a label-free and detection-free manner. Insomuch as on-chip, precise separation of multiple kinds of droplets is critical in many droplet microfluidic applications, the proposed acoustofluidic approach will provide new prospects for microscale droplet separation.  相似文献   

5.
Ultrasound (US) is a promising method to address clogging and mixing issues in microreactors (MR). So far, low frequency US (LFUS), pulsed LFUS and high frequency US (HFUS) have been used independently in MR for particle synthesis to achieve narrow particle size distributions (PSD). In this work, we critically assess the advantages and disadvantages of each US application method for the case study of calcium carbonate synthesis in an ultrasonic microreactor (USMR) setup operating at both LFUS (61.7 kHz, 8 W) and HFUS (1.24 MHz, 1.6 W). Furthermore, we have developed a novel approach to switch between LFUS and HFUS in an alternating manner, allowing us to quantify the synergistic effect of performing particle synthesis under two different US conditions. The reactor was fabricated by gluing a piezoelectric plate transducer to a silicon microfluidic chip. The results show that independently applying HFUS and LFUS produces a narrower PSD compared to silent conditions. However, at lower flow rates HFUS leads to agglomerate formation, while the reaction conversion is not enhanced due to weak mixing effects. LFUS on the other hand eliminates particle agglomerates and increases the conversion due to the strong cavitation effect. However, the required larger power input leads to a steep temperature rise in the reactor and the risk of reactor damage for long-term operation. While pulsed LFUS reduces the temperature rise, this application mode leads again to the formation of particle agglomerates, especially at low LFUS percentage. The proposed application mode of switching between LFUS and HFUS is proven to combine the advantages of both LFUS and HFUS, and results in particles with a unimodal narrow PSD (one order of magnitude reduction in the average size and span compared to silent conditions) and negligible rise of the reactor temperature.  相似文献   

6.
The ability to fabricate tapered microchannels with customizable cross sections in a variety of materials is highly desirable for microfluidic applications. This article examines ultrafast laser machining of tapered microchannel trenches in both hard (soda-lime and borosilicate glasses) and soft (PDMS elastomer) transparent solids. A simple model for channel width and depth as a function of processing parameters and threshold fluence is presented. Estimated channel sizes from the model are in good agreement with experimental results. We also show that the channel depth is a linear function of the number of laser pulses per channel width. All measurement data are found to collapse onto a single curve, which can serve as a useful guide for micromachining of tapered channels in transparent materials.  相似文献   

7.
By using the mathematical formalism of absolute and convective instabilities we study the nature of unstable three-dimensional disturbances of viscoelastic flow convection in a porous medium with horizontal through-flow and vertical temperature gradient. Temporal stability analysis reveals that among three-dimensional (3D) modes the pure down-stream transverse rolls are favored for the onset of convection. In addition, by considering a spatiotemporal stability approach we found that all unstable 3D modes are convectively unstable except the transverse rolls which may experience a transition to absolute instability. The combined influence of through-flow and elastic parameters on the absolute instability threshold, wave number and frequency is then determined, and results are compared to those of a Newtonian fluid.  相似文献   

8.
9.
Towards the end of 1999, the building of one of the main communication routes in Spain was finished, the A-3 motorway, which connects Madrid and Valencia. So far, this road was running through the town Motilla de Palancar, province of Cuenca. The opening of the last section of the motorway on 3 December 1999, re-routes all the traffic passing through the town. This study makes a comparative of the noise levels before and after the opening of the motorway that goes through Motilla de Palancar.  相似文献   

10.
Suspension culture is an essential large-scale cell culture technique for biopharmaceutical development and regenerative medicine. To transition from monolayer culture on the culture surface of a flask to suspension culture in a bioreactor, a pre-specified cell number must first be reached. During this period of preparation for suspension culture, static suspension culture in a flask is generally performed because the medium volume is not large enough to use a paddle to circulate the medium. However, drawbacks to this static method include cell sedimentation, leading to high cell density near the bottom and resulting in oxygen and nutrient deficiencies. Here, we propose a suspension culture method with acoustic streaming induced by ultrasonic waves in a T-flask to create a more homogeneous distribution of oxygen, nutrients, and waste products during the preparation period preceding large-scale suspension culture in a bioreactor. To demonstrate the performance of the ultrasonic method, Chinese hamster ovary cells were cultured for 72 h. Results showed that, on average, the cell proliferation was improved by 40% compared with the static method. Thus, the culture time required to achieve a 1000-fold increase could be reduced by 32 h (a 14% reduction) compared with the static method. Furthermore, the ultrasonic irradiation did not compromise the metabolic activity of the cells cultured using the ultrasonic method. These results demonstrate the effectiveness of the ultrasonic method for accelerating the transition to large-scale suspension culture.  相似文献   

11.
We report theoretical and numerical results on convection for a magnetic fluid in a viscoelastic carrier liquid. We focus in the stationary convection for idealized boundary conditions. We obtain explicit expressions of convective thresholds in terms of the control parameters of the system. Close to bifurcation, the coefficients of the corresponding amplitude equation are determined analytically. Finally, the secondary instabilities are performed.  相似文献   

12.
We report theoretical and numerical results on convection for a magnetic fluid in a viscoelastic carrier liquid. The viscoelastic properties is given by the Oldroyd model. We obtain explicit expressions for the convective thresholds in terms of the parameters of the system in the case of idealized boundary conditions. We also calculate numerically the convective thresholds for the case of realistic boundary conditions. The effect of the Kelvin force and of the rheology on instability thresholds for a diluted suspensions are emphasized.  相似文献   

13.
Stratification is one of the main causes for vaporization of cryogens and increase of tank pressure during cryogenic storage. This leads subsequent problems such as cavitation in cryo-pumps, reduced length of storage time. Hence, it is vital to prevent stratification to improve the cost efficiency of storage systems. If stratified layers exist inside the tank, they have to be removed by suitable methods without venting the vapor. Sonication is one such method capable of keeping fluid layers mixed. In the present work, a mechanistic model for ultrasonic destratification is proposed and validated with destratification experiments done in water. Then, the same model is used to predict the destratification characteristics of cryogenic liquids such as liquid nitrogen (LN2), liquid hydrogen (LH2) and liquid ammonia (LNH3). The destratification parameters are analysed for different frequencies of ultrasound and storage pressures by considering continuous and pulsed modes of ultrasonic operation. From the results, it is determined that use of high frequency ultrasound (low-power/continuous; high-power/pulsing) or low frequency ultrasound (continuous operation with moderate power) can both be effective in removing stratification.  相似文献   

14.
The focus of this work is to extend the theory of boundary layer induced acoustic streaming to include cylindrical geometries and to highlight the effects of boundary layer induced streaming on flow velocities in micro-scale channels. The work presented here includes the development of a model for streaming in a cylindrical channel by a method of successive approximations. The validity of this model is established by comparison with a well-established model for streaming between parallel plates of infinite extent. This is followed by a discussion on the importance of employing a cylindrical solution including boundary layer induced streaming for the analysis of streaming in micro-scale channels.  相似文献   

15.
We theoretically investigate the looping dynamics of a linear chain immersed in a viscoelastic fluid. The dynamics of the chain is governed by a Rouse model with a fractional memory kernel recently proposed by Weber et al. [S.C. Weber, J.A. Theriot, A.J. Spakowitz, Phys. Rev. E 82 (2010) 011913]. Using the Wilemski–Fixman [G. Wilemski, M. Fixman, J. Chem. Phys. 60 (1974) 866] formalism we calculate the looping time for a chain in a viscoelastic fluid where the mean square displacement of the center of mass of the chain scales as t1/2t1/2. We observe that the looping time is faster for the chain in a viscoelastic fluid than for a Rouse chain in a Newtonian fluid up to a chain length and above this chain length the trend is reversed. Also no stable scaling of the looping time with the length of the chain seems to exist for the chain in a viscoelastic fluid.  相似文献   

16.
戴卿  项楠  程洁  倪中华 《物理学报》2015,64(15):154703-154703
微粒黏弹性聚焦技术近年来受到了广泛的研究重视, 但影响粒子聚焦特性的关键参数调控机理仍不清楚. 基于此目的, 本文量化研究了圆截面直流道中非牛顿流体诱导微粒黏弹性聚焦的行为, 给出了流速和流道长度对粒子聚焦特性的调控机理. 具体而言: 首先, 对比分析不同黏度牛顿流体(水和22 wt%甘油水溶液)和非牛顿流体(8 wt%聚乙烯吡咯烷酮水溶液)中粒子横向迁移行为, 发现非牛顿流体中粒子将在弹性力主导下聚焦至流道中心区域, 而牛顿流体中粒子则在惯性升力主导下迁移形成Segré-Silberberg圆环. 其次, 量化分析粒子尺寸和驱动流速对黏弹性聚焦效果的影响, 发现随着流速的增加, 粒子聚焦效果逐渐变好并最终趋于稳定, 且大粒子较小粒子具有更好的聚焦效果. 最后, 研究粒子沿流道长度的动态聚焦过程, 推导并验证了粒子聚焦所需安全流道长度的数学模型, 发现大粒子聚焦所需安全流道长度显著短于小粒子. 上述研究结果对于提升粒子黏弹性聚焦机理和过程的理解, 实现微粒聚焦特性的灵活控制具有非常重要的意义.  相似文献   

17.
郝鹏飞  姚朝晖  何枫 《物理学报》2007,56(8):4728-4732
利用实验方法研究了粗糙度对矩形截面微管道内液体流动阻力特性的影响,采用微观粒子图像测速技术测量了粗糙微管道内的流场结构.实验结果表明:在层流状态下,3%—7%的相对粗糙度可以导致微管道内流动阻力的明显增加,在粗糙单元附近形成的压差阻力是导致流动阻力增加的主要原因.粗糙单元还会引起微管道内的流动失稳,导致粗糙微管道内层流向湍流的转捩提前. 关键词: 微管道 粗糙度 微观粒子图像测速 转捩  相似文献   

18.
杜萌  金宁德  高忠科  朱雷  王振亚 《物理学报》2012,61(23):113-121
采用多尺度排列熵算法研究了垂直油水两相流水包油流型的多尺度动力学特性.首先,在内径为20 mm的垂直管道内采集了油水两相流水包油流型电导传感器波动信号,然后计算了不同流动工况下电导波动信号的多尺度排列熵值.研究发现多尺度排列熵率与均值可定量刻画水包油流型动力学复杂性;此外,提出了通过增量时间序列累积量与多尺度排列熵率联合分布识别三种不同水包油流型的新途径.  相似文献   

19.
以去离子水和质量分数为0.3%的水基纳米流体为工质,在当量直径为1.241mm的矩形微通道内进行了两相流流动沸腾的实验研究,并借助高速摄像仪对矩形微通道内流型随着质量流量及热流密度的变化进行了观察分析。实验结果表明:单位长度上的两相摩擦压降会随着质量流速的提升而提高;单位长度上的两相摩擦压降会随着热流密度的增大而升高;减小质量流速和提高其热流密度均会加快气泡的产生并提高气泡的脱离直径,当热流密度增大到一定程度时,通道内几乎为环状流与液态单相流交替出现,且环状流占周期中的较长时间。  相似文献   

20.
This paper aims at investigating the influence of acoustic streaming induced by low-frequency (24 kHz) ultrasound irradiation on mass transfer in a two-phase system. The main objective is to discuss the possible mass transfer improvements under ultrasound irradiation. Three analyses were conducted: i) experimental analysis of mass transfer under ultrasound irradiation; ii) comparative analysis between the results of the ultrasound assisted mass transfer with that obtained from mechanically stirring; and iii) computational analysis of the systems using 3D CFD simulation. In the experimental part, the interactive effects of liquid rheological properties, ultrasound power and superficial gas velocity on mass transfer were investigated in two different sonicators. The results were then compared with that of mechanical stirring. In the computational part, the results were illustrated as a function of acoustic streaming behaviour, fluid flow pattern, gas/liquid volume fraction and turbulence in the two-phase system and finally the mass transfer coefficient was specified. It was found that additional turbulence created by ultrasound played the most important role on intensifying the mass transfer phenomena compared to that in stirred vessel. Furthermore, long residence time which depends on geometrical parameters is another key for mass transfer. The results obtained in the present study would help researchers understand the role of ultrasound as an energy source and acoustic streaming as one of the most important of ultrasound waves on intensifying gas-liquid mass transfer in a two-phase system and can be a breakthrough in the design procedure as no similar studies were found in the existing literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号