首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We calculate the Γ   Xzelectron transfer times due to the emission of confined and interface LO phonons in type-II GaAs–AlAs and AlGaAs–AlAs superlattices. A dielectric continuum model is employed to describe the electron–phonon interaction, and the electron envelope wavefunctions are obtained from a Kronig–Penney model. The calculated transfer times are in good agreement with available experimental results. We have used two different sets of AlAs X-valley effective masses obtained from different experiments and we show that the transfer times calculated with the heavier masses are in closer agreement with the measured data.  相似文献   

2.
We calculate scattering rates of intrasubband and intersubband electronic transitions in asymmetric single quantum wells (QW's) and step QW's due to interface phonons, confined bulk-like LO phonons, and half-space LO phonons. The relative importance of the different phonon modes is analyzed. The results show that the electron-phonon scattering rates have intimate relation to the QW parameters.  相似文献   

3.
We have calculated the ionization energy of a bound polaron confined in general step quantum wells (QWs) in the presence of an electric field, in which the coupling of an electron with confined bulk-like LO phonons, half-space LO phonons and interface phonons is considered. In particular, the interaction of the impurity with the various phonon modes is also included in QWs. Results have been obtained as a function of the barrier height, the well width, the electric field intensities and the position coordinates of the impurity in the QWs. Our numerical calculations clearly show that the interaction between the impurity and the phonon field plays an important role in screening the Coulomb interaction. It is shown that the cumulative effect of the electron–phonon coupling and the impurity–phonon coupling can contribute appreciably to the donor ionization energy. Only for a certain range of well widths can we neglect all the polaronic effects.  相似文献   

4.
In this work, we have studied the inter- and intra-subband scattering of hot electrons in quantum wells using the hot electron-neutral acceptor luminescence technique. We have observed direct evidence of the emission of confined optical phonons by hot electrons excited slightly above the n=2 subband in GaAs/Al0.37Ga0.63As quantum wells. Scattering rates of photoexcited electrons via inter- and intra-subband LO phonon emission were calculated based on the dielectric continuum model. We found that, for wide wells with the Al composition of our experiments, both the calculated and experimental results suggest that the scattering of the electrons is dominated by the confined LO phonon mode. In the calculations, scatterings among higher subbands are also dominated by the same type of phonon at well width of 10 nm.  相似文献   

5.
We have performed the calculation of resonant-phonon transition in a terahertz quantum cascade laser. The electron wavefunctions and energy levels are obtained by solving the Schroedinger and Poisson equations selfconsistently. The scattering rates of the confined, interface, and bulk phonons are calculated by using the Fermi golden rule. It has been shown that the confined phonon scattering is comparable to the interface phonon scattering and should be taken into consideration in the calculation.  相似文献   

6.
We have studied theoretically the electron-phonon scattering rates in GaAs/AlAs quantum wells which have additional thin AlAs layers in them using the dielectric continuum approach for the phonons. The confined and interface phonon modes and the intersubband electron phonon scattering rates of these structures have been calculated. The system with an additional AlAs layer is found to have intersubband electron scattering rates which are increased modestly as compared to those for the corresponding quantum well. These results show that scattering rates in general are expected to depend only weakly on the effects of system structure on the optical phonon spectra.  相似文献   

7.
By using a modified Lee-Low-Pines variational method, we have investigated the ground-state binding energy of a polaron confined in asymmetric single and step quantum wells (QWs) due to interface phonons, confined bulk-like LO phonons, and half-space LO phonons. The relative importance of the different phonon modes is analysed in detail. Our results show that the asymmetry and the well width of the QWs have a significant influence on the polaron energy. The polaron binding energy has an intimate relation to the potential parameters of QWs. The subband nonparabolicity has a little influence to the polaron binding energy. Comparing with the results calculated with perturbation theory, a good agreement is found.  相似文献   

8.
The theoretical investigations of the interface optical phonons, electron–phonon couplings and its ternary mixed effects in zinc-blende spherical quantum dots are obtained by using the dielectric continuum model and modified random-element isodisplacement model. The features of dispersion curves, electron–phonon coupling strengths, and its ternary mixed effects for interface optical phonons in a single zinc-blende GaN/AlxGa1−xN spherical quantum dot are calculated and discussed in detail. The numerical results show that there are three branches of interface optical phonons. One branch exists in low frequency region; another two branches exist in high frequency region. The interface optical phonons with small quantum number l have more important contributions to the electron–phonon interactions. It is also found that ternary mixed effects have important influences on the interface optical phonon properties in a single zinc-blende GaN/AlxGa1−xN quantum dot. With the increase of Al component, the interface optical phonon frequencies appear linear changes, and the electron–phonon coupling strengths appear non-linear changes in high frequency region. But in low frequency region, the frequencies appear non-linear changes, and the electron–phonon coupling strengths appear linear changes.  相似文献   

9.
In semiconductor microstructures with many layers, the phonon modes change from their bulk form and split into ‘confined LO phonons’ (LC) and ‘interface phonons’ (IF), the number and variety of which depends on both the number of layers and the number of different materials in the structure. This affects the electron–phonon scattering rates. Because of the current interest in inter-subband THz emitters, we use these LC and IF modes to evaluate the inter-subband electron–phonon scattering rate in THz emitter prototypes that are based on four-subband stepped quantum wells. These scattering rates in turn affect the population inversion predicted for these devices, so we compare the predicted population inversions for the most promising prototypes against those obtained using bulk phonon scattering rates.  相似文献   

10.
It is shown, that hot electrons generated in a semiconductor can transfer their excess free energy into an embedded/adjacent plasmonic metallic structure (reservoir), before it is lost irreversibly to phonons in the semiconductor. Since the plasmon–phonon (and plasmon–photon) scattering in the metallic structure could be much slower than the electron–phonon scattering in the semiconductor, free energy of the hot electrons can be this way effectively protected from phonon emission for a significant amount of time. While the cubic point‐dipole crystal is proposed and studied here specifically as the plasmonic reservoir, other plasmonic structures including planar can be employed. It is also shown how the plasmon‐protected energy can by recycled in a novel, 3rd generation solar cell, be employing a planar plasmonic structure that is simultaneously also an electron collector of the cell. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
赵凤岐  张敏  李志强  姬延明 《物理学报》2014,63(17):177101-177101
用改进的Lee-Low-Pines变分方法研究纤锌矿In0.19Ga0.81N/GaN量子阱结构中束缚极化子能量和结合能等问题,给出基态结合能、不同支长波光学声子对能量和结合能的贡献随阱宽和杂质中心位置变化的数值结果.在数值计算中包括了该体系中声子频率的各向异性和内建电场对能量和结合能的影响、以及电子和杂质中心与长波光学声子的相互作用.研究结果表明,In0.19Ga0.81N/GaN量子阱材料中光学声子和内建电场对束缚极化子能量和结合能的贡献很大,它们都引起能量和结合能降低.结合能随着阱宽的增大而单调减小,窄阱中减小的速度快,而宽阱中减小的速度慢.不同支声子对能量和结合能的贡献随着阱宽的变化规律不同.没有内建电场时,窄阱中,定域声子贡献小于界面和半空间声子贡献,而宽阱中,定域声子贡献大于界面和半空间声子贡献.有内建电场时,定域声子贡献变小,而界面和半空间声子贡献变大,声子总贡献也有明显变化.在In0.19Ga0.81N/GaN量子阱中,光学声子对束缚极化子能量和结合能的贡献比GaAs/Al0.19Ga0.81As量子阱中的相应贡献(约3.2—1.8和1.6—0.3 meV)约大一个数量级.阱宽(d=8 nm)不变时,在In0.19Ga0.81N/GaN量子阱中结合能随着杂质中心位置Z0的变大而减小,并减小的速度变快.随着Z0的增大,界面和半空间光学声子对结合能的贡献缓慢减小,而定域光学声子的贡献缓慢增大.  相似文献   

12.
《Physics letters. A》2014,378(32-33):2443-2448
The interface optical phonons and its ternary effects in onion-like quantum dots are studied by using dielectric continuum model and the modified random-element isodisplacement model. The dispersion relations, the electron–phonon interactions and ternary effects on the interface optical phonons are calculated in the GaN/AlxGa1  xN onion-like quantum dots. The results show that aluminium concentration has important influence on the interface optical phonons and electron–phonon interactions in GaN/AlxGa1  xN onion-like quantum dots. The frequencies of interface optical phonons and electron–phonon coupling strengths change linearly with increase of aluminium concentration in high frequency range, and do not change linearly with increasing aluminium concentration in low frequency range.  相似文献   

13.
The Larsen perturbation method is adopted to study the influence of magnetic fields on polarons in realistic heterojunctions in a quasi-two-dimension approximation. The interaction between an electron and both the bulk longitudinal optical phonons and the two branches of interface optical phonons is taken into account to show the influence of magnetic fields at different ranges on the polaron cyclotron mass due to the coupling of the electron with each branch of phonon modes. The result indicates that not only do the bulk phonons influence the polaron cyclotron mass, but the interface phonons do as well. The pressure effect on the cyclotron mass is also discussed.  相似文献   

14.
Electronic thermal conductivity κe is investigated, using Boltzmann transport equation approach, in a suspended and supported bilayer graphene (BLG) as a function of temperature and electron concentration. The electron scattering due to screened charged impurity, short-range disorder and acoustic phonon via deformation potential are considered for both suspended and supported BLG. Additionally, scattering due to surface polar phonons, is considered in supported BLG. In suspended BLG, calculated κe is compared with the experimental data leaving the phonon thermal conductivity. It is emphasized that κe is important in samples with very high electron concentration and reduced phonon thermal conductivity. κe is found to be about two times smaller in supported BLG compared to that in suspended BLG. With the reduced extrinsic disorders, in principle, the intrinsic scattering by acoustic phonons can set a fundamental limit on possible intrinsic κe.  相似文献   

15.
Phonon effect on hydrogenic impurity states in cylindrical quantum wires of polar semiconductors under an applied electric field is studied theoretically by a variational approach. The binding energies are calculated as functions of the transverse dimension of the quantum wire, and the donor-impurity position under different fields. The electron–phonon interaction is considered in the calculations by taking both the confined bulk longitudinal optical phonons and interface optical phonons as well as the impurity-ion–phonon coupling. The numerical results for the CdTe and GaAs quantum wires are given and discussed as examples. It is confirmed that the electron–phonon interaction obviously reduces both the binding energy and the Stark energy-shift of the bound polarons in quantum wires.  相似文献   

16.
The form factors of the electron–phonon interaction for GaAs/Ga1−xAlxAs single heterostructures have been evaluated using a finite height barrier. The calculations are performed within the extreme quantum limit approximation, assuming for the envelope electronic wavefunction a modified Fang–Howard wavefunction. Both types of long-wave phonons, longitudinal optical and interface phonons, are considered. It is found that the effect of the finite height is to reduce the strength of the electron–phonon interaction.  相似文献   

17.
A. Bande 《Molecular physics》2019,117(15-16):2014-2028
ABSTRACT

Recently, highly accurate multi-configuration time-dependent Hartree electron dynamics calculations demonstrated the efficient long-range energy transfer inter-Coulombic decay (ICD) process to happen in charged semiconductor quantum dot (QD) pairs. ICD is initiated by intraband photoexcitation of one of the QDs and leads to electron emission from the other within a duration of about 150 ps. On the same time scale electronically excited states are reported to relax due to the coupling of electrons to acoustic phonons. Likewise, phonons promote ionisation. Here, the QDs' acoustic breathing mode is implemented in a frozen-phonon approach. A detailed comparison of the phonon effects on electron relaxation and emission as well as on the full ICD process is presented, which supports the previous empirical finding of ICD being the dominant decay channel in paired QDs. In addition the relative importance of phonon–phonon, phonon–electron and electron–electron interaction is analysed.  相似文献   

18.
郝国栋  班士良  贾秀敏 《中国物理》2007,16(12):3766-3771
By taking the influence of optical phonon modes into account, this paper adopts the dielectric continuum phonon model and force balance equation to investigate the electronic mobility parallel to the interfaces for AlAs/GaAs semiconductor quantum wells (QWs) under hydrostatic pressure. The scattering from confined phonon modes, interface phonon modes and half-space phonon modes are analysed and the dominant scattering mechanisms in wide and narrow QWs are presented. The temperature dependence of the electronic mobility is also studied in the temperature range of optical phonon scattering being available. It is shown that the electronic mobility reduces obviously as pressure increases from 0 to 4GPa, the confined longitudinal optical (LO) phonon modes play an important role in wide QWs, whereas the interface optical phonon modes are dominant in narrow QWs, the half-space LO phonon modes hardly influence the electronic mobility expect for very narrow QWs.  相似文献   

19.
We report the new phenomenon that high-energy phonons can be created from low-energy phonons. This arises because the dynamics of phonons in propagating pulses are quite different to those in isotropic phonon distributions. A pulse of low-energy phonons rapidly thermalises by three-phonon processes. On a much longer time scale four-phonon processes occur within this phonon cloud which create high-energy (10 K) phonons that cannot spontaneously decay. These phonons have a lower velocity and so are lost from the back of phonon cloud; their deficit is restored continuously by four-phonon processes. These now isolated high-energy phonons are very stable and propagate ballistically behind the low-energy phonons, so giving the two pulses which are detected in experiments. For long pulses the high-energy phonons may also decay within the cloud, however the available low-energy phonons for scattering are confined to a narrow-angle cone, so the decay probability is very low because the four phonon process requires large angle scattering. A supra-thermal density of these high-energy phonons is predicted.  相似文献   

20.
Based on the dielectric continuum phonon model, uniaxialmodel and force balance equation the mobility of two dimensional electrongas in wurtzite AlxGa1-xN/GaN/AlxGa1-xN quantum wells isdiscussed theoretically within the temperature range dominated by opticalphonons. The dependences of the electron mobility on temperature, Al molarfraction and electron sheet density are presented including hydrostaticpressure effect. The built-in electric field is also taken into account. Itis found that under normal pressure the main contribution to the mobility isfrom the scattering of interface optical phonons in narrow (for well widthd < 12 Å) and wide (for d > 117 Å and d > 65 Å for finitelythick barriers and infinitely thick ones, respectively) wells, whereas thatis from the scattering of confined optical phonons in a well with anintermediate width. It is shown that the electron mobility decreases withincreasing Al molar fraction and temperature, whereas increases obviouslywith increasing electron sheet density. The theoretical calculated electronmobility is 978 cm2/V?s which is higher than an available experimentaldata 875 cm2/V?s when x equals to 0.58 at room temperature. Theresults under hydrostatic pressure considering the modification of strainindicate that the mobility increases slightly as hydrostatic pressureincreases from 0 to 10 GPa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号