首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Brujan EA 《Ultrasonics》2008,48(5):423-426
The role of extensional viscosity on the acoustic emission from laser-induced cavitation bubbles in polymer solutions and near a rigid boundary is investigated by acoustic measurements. The polymer solutions consist of a 0.5% polyacrylamide (PAM) aqueous solution with a strong elastic component and a 0.5% carboxymethylcellulose (CMC) aqueous solution with a weak elastic component. A reduction of the maximum amplitude of the shock wave pressure and a prolongation of the oscillation period of the bubble were found in the elastic PAM solution. It might be caused by an increased resistance to extensional flow which is conferred upon the liquid by the polymer additive. In both polymer solutions, however, the shock pressure decays proportionally to r−1 with increasing distance r from the emission centre.  相似文献   

2.
3.
卞保民  陈笑  夏铭  杨玲  沈中华 《物理学报》2004,53(2):508-513
将空气中球对称冲击波衰减波前传播公式推广到非完全中心对称情况,根据对光学阴影法对激光等离子体冲击波波前测试数据的计算分析,提出液体中点源激光等离子体冲击波旋转椭球面波前传播公式.并且用声学方法对水中和酒精中的激光等离子体冲击波波前进行实验测试,结果表明测试结果与计算公式相吻合. 关键词: 激光 等离子体冲击波 旋转椭球面  相似文献   

4.
《Ultrasonics sonochemistry》2014,21(5):1696-1706
The generation and control of acoustic cavitation structure are a prerequisite for application of cavitation in the field of ultrasonic sonochemistry and ultrasonic cleaning. The generation and control of several typical acoustic cavitation structures (conical bubble structure, smoker, acoustic Lichtenberg figure, tailing bubble structure, jet-induced bubble structures) in a 20–50 kHz ultrasonic field are investigated. Cavitation bubbles tend to move along the direction of pressure drop in the region in front of radiating surface, which are the premise and the foundation of some strong acoustic cavitation structure formation. The nuclei source of above-mentioned acoustic cavitation structures is analyzed. The relationship and mutual transformation of these acoustic cavitation structures are discussed.  相似文献   

5.
This review tries to cover as many research fields and literatures associated with cavitation in thin liquid layer as possible. The intent was to summarize (i) list all the research fields related to cavitation in thin liquid layer that can be collected, (ii) advances in the investigation of cavitation in thin liquid layer, and (iii) draw attention to the relatively macroscopic cavitation behavior in thin liquid layer.  相似文献   

6.

Objective

Applying shock waves to the heart has been reported to stimulate the heart and alter cardiac function. We hypothesized that shock waves could be used to diagnose regional viability.

Method

We used a Langendorff model to investigate the acute effects of shock waves at different energy levels and times related to systole, cycle duration and myocardial function.

Results

We found only a small time window to use shock waves. Myocardial fibrillation or extrasystolic beats will occur if the shock wave is placed more than 15 ms before or 30 ms after the onset of systole. Increased contractility and augmented relaxation were observed after the second beat, and these effects decreased after prolonging the shock wave delay from 15 ms before to 30 ms after the onset of systole. An energy dependency could be found only after short delays (−15 ms). The involved processes might include post-extrasystolic potentiation and simultaneous pacing.

Conclusion

In summary, we found that low-energy shock waves can be a useful tool to stimulate the myocardium at a distance and influence function.  相似文献   

7.
A novel coating approach, based on laser shock wave generation, was employed to induce compressive pressures up to 5 GPa and compact nanodiamond (ND) powders (4-8 nm) on aluminum 319 substrate. Raman scattering indicated that the coating consisted of amorphous carbon and nanocrystalline graphite with peaks at 1360 cm−1 and 1600 cm−1 respectively. Scanning electron microscopy revealed a wavy, non-uniform coating with an average thickness of 40 μm and absence of thermal effect on the surrounding material. The phase transition from nanodiamond to other phases of carbon is responsible for the increased coating thickness. Vicker's microhardness test showed hardness in excess of 1000 kgf/mm2 (10 GPa) while nanoindentation test indicated much lower hardness in the range of 20 MPa to 2 GPa. Optical surface profilometry traces displayed slightly uneven surfaces compared to the bare aluminum with an average surface roughness (Ra) in the range of 1.5-4 μm depending on the shock wave pressure and type of confining medium. Ball-on-disc tribometer tests showed that the coefficient of friction and wear rate were substantially lower than the smoother, bare aluminum sample. Laser shock wave process has thus aided in the generation of a strong, wear resistant, durable carbon composite coating on aluminum 319 substrate.  相似文献   

8.
The interplay among the cavitation structures and the shock waves following a nanosecond laser breakdown in water in the vicinity of a concave surface was visualized with high-speed shadowgraphy and schlieren cinematography. Unlike the generation of the main cavitation bubble near a flat or a convex surface, the concave surface refocuses the emitted shock waves and causes secondary cavitation near the acoustic focus which is most pronounced when triggered by the shock wave released during the first main bubble collapse. The shock wave propagation, reflection from the concave surface and its scattering on the dominant cavity is clearly resolvable on the shadowgraphs. The schlieren approach revealed the pressure build up in the last stage of the collapse and the first stage of the rebound. A persistent low-density watermark is left behind the first collapse. The observed effects are important wherever cavities collapse near indented surfaces, such as in cavitation peening, cavitation erosion and ophthalmology.  相似文献   

9.
In ultrasonic-assisted machining, the synergistic effect of the cavitation effect and micro-abrasive particles plays a crucial role. Studies have focused on the investigation of the micro-abrasive particles, cavitation micro-jets, and cavitation shock waves either individually or in pairs. To investigate the synergy of shock waves and micro-jets generated by cavitation with micro-abrasive particles in ultrasonic-assisted machining, the continuous control equations of a cavitation bubble, shock wave, micro-jet, and micro-abrasive particle influenced by the dimensionless amount (R/R0), a particle size-velocity–pressure model of the micro-abrasive particle was established. The effects of ultrasonic frequency, sound pressure amplitude, and changes in particle size on micro-abrasive particle velocity and pressure were numerically simulated. At an ultrasonic frequency of 20 kHz and ultrasonic sound pressure of 0.1125 MPa, a smooth spherical SiO2 micro-abrasive particle (size = 5 µm) was obtained, with a maximum velocity of 190.3–209.4 m/s and pressure of 79.69–89.41 MPa. The results show that in the range of 5–50 μm, smaller particle sizes of the micro-abrasive particles led to greater velocity and pressure. The shock waves, micro-jets, and micro-abrasive particles were all positively affected by the dimensionless amount (R/R0) of cavitation bubble collapse, the larger the dimensionless quantity, the faster their velocity and the higher their pressure.  相似文献   

10.
With the use of the nonpolynomial closure 1/ z in the Mott-Smith approximation of the solution of the Boltzmann equation, we obtain a value of the density gradient in the limit of a very weak shock wave that is close to the correct value. For the determination of the transverse temperature gradient we calculated the x 2 / z moment of the Mott-Smith collision integral. The effective values of viscosity and thermal conductivity in the limit of a very weak shock wave were calculated for inverse-power potentials and found to agree almost exactly with the Chapman-Enskog values. Such a comparison can serve as a criterion for the evaluation of different bimodal theories. Various bimodal theories give different values of viscosity and thermal conductivity, but all of them give 33 % too high a value of the Eucken ratio.  相似文献   

11.
 采用简化材料状态方程,用1维特征线方法计算了激光驱动冲击波在多层材料中稳定传播的距离。计算结果与用1维三温激光-靶耦合JB程序的数值模拟结果进行了比较,二者符合得比较好。通过计算发现:冲击波在Au中的稳定传播距离受基底厚度的影响很大,稳定传播距离随基底厚度的增加先增大后减小。  相似文献   

12.
A model for acoustic cavitation flows able to depict large geometries and time scales is proposed. It is based on the Euler–Lagrange approach incorporating a novel Helmholtz solver with a non-linear acoustic attenuation model. The method is able to depict a polydisperse bubble population, which may vary locally. The model is verified and analyzed in a setup with a large sonotrode. Influences of the initial void fraction and the population type are studied. The results show that the velocity is strongly influenced by these parameters. Furthermore, the largest bubbles determine the highest pressure amplitude reached in the domain, which corresponds to the Blake threshold of these bubbles. Additionally, a validation is performed with a small sonotrode. The model reproduces most of the experimentally observed phenomena. In the experiments, neighboring bubbles are found which move in different directions depending on their size. The numerical results show that the responsible mechanism here is the reversal of the primary Bjerknes force at a certain pressure amplitude.  相似文献   

13.
In a companion paper, a reduced model for propagation of acoustic waves in a cloud of inertial cavitation bubbles was proposed. The wave attenuation was calculated directly from the energy dissipated by a single bubble, the latter being estimated directly from the fully nonlinear radial dynamics. The use of this model in a mono-dimensional configuration has shown that the attenuation near the vibrating emitter was much higher than predictions obtained from linear theory, and that this strong attenuation creates a large traveling wave contribution, even for closed domain where standing waves are normally expected. In this paper, we show that, owing to the appearance of traveling waves, the primary Bjerknes force near the emitter becomes very large and tends to expel the bubbles up to a stagnation point. Two-dimensional axi-symmetric computations of the acoustic field created by a large area immersed sonotrode are also performed, and the paths of the bubbles in the resulting Bjerknes force field are sketched. Cone bubble structures are recovered and compare reasonably well to reported experimental results. The underlying mechanisms yielding such structures is examined, and it is found that the conical structure is generic and results from the appearance a sound velocity gradient along the transducer area. Finally, a more complex system, similar to an ultrasonic bath, in which the sound field results from the flexural vibrations of a thin plate, is also simulated. The calculated bubble paths reveal the appearance of other commonly observed structures in such configurations, such as streamers and flare structures.  相似文献   

14.
A systemic investigation of expansion dynamics of plasma plume, produced by laser-blow-off of LiF–C thin film has been done with emphasis on the formation of shock wave and their dependence on the pressure and nature of the ambient gas. The present results demonstrate that highly directional plume produces a strong shock wave in comparison to shock produced by the diverging plume. Shock-velocity, strength and its structure are strongly dependent on ambient environment; maximum shock velocity is observed in helium whereas shock strength is highest in argon environment. The role of chemically reactive processes was not observed in the present case as the plume structure is almost similar in argon and oxygen.  相似文献   

15.
The generation of ultrasonic cavitation in a thin liquid layer trapped between a large radiating surface and a hard reflector and bounded laterally by a gas–liquid interface is investigated. The theoretical analysis predicts that a large amplification of the acoustical pressure is obtained with this configuration. Experiments are conducted by driving the layer with horn-type transducers having a large emitting surface. Ultrasonic cavitation is obtained in a broad frequency range at low input intensity due to the amplification effect. Erosion tests on metallic foils demonstrate the existence of a region of intense cavitation activity which can be localised by controlling the input intensity.  相似文献   

16.
We investigate the acoustic wave propagation in bubbly liquid inside a pilot sonochemical reactor which aims to produce antibacterial medical textile fabrics by coating the textile with ZnO or CuO nanoparticles. Computational models on acoustic propagation are developed in order to aid the design procedures. The acoustic pressure wave propagation in the sonoreactor is simulated by solving the Helmholtz equation using a meshless numerical method. The paper implements both the state-of-the-art linear model and a nonlinear wave propagation model recently introduced by Louisnard (2012), and presents a novel iterative solution procedure for the nonlinear propagation model which can be implemented using any numerical method and/or programming tool. Comparative results regarding both the linear and the nonlinear wave propagation are shown. Effects of bubble size distribution and bubble volume fraction on the acoustic wave propagation are discussed in detail. The simulations demonstrate that the nonlinear model successfully captures the realistic spatial distribution of the cavitation zones and the associated acoustic pressure amplitudes.  相似文献   

17.
Extracorporeal shock wave lithotripsy (SWL) is a reliable therapy for the treatment of urolithiasis. Nevertheless, improvements to enhance stone fragmentation and reduce tissue damage are still needed. During SWL, cavitation is one of the most important stone fragmentation mechanisms. Bubbles with a diameter between about 7 and 55 μm have been reported to expand and collapse after shock wave passage, forming liquid microjets at velocities of up to 400 m/s that contribute to the pulverization of renal calculi. Several authors have reported that the fragmentation efficiency may be improved by using tandem shock waves. Tandem SWL is based on the fact that the collapse of a bubble can be intensified if a second shock wave arrives tenths or even a few hundredths of microseconds before its collapse. The object of this study is to determine if tandem pulses consisting of a conventional shock wave (estimated rise time between 1 and 20 ns), followed by a slower second pressure profile (0.8 μs rise time), have advantages over conventional tandem SWL. The Gilmore equation was used to simulate the influence of the modified pressure field on the dynamics of a single bubble immersed in water and compare the results with the behavior of the same bubble subjected to tandem shock waves. The influence of the delay between pulses on the dynamics of the collapsing bubble was also studied for both conventional and modified tandem waves. For a bubble of 0.07 mm, our results indicate that the modified pressure profile enhances cavitation compared to conventional tandem waves at a wide range of delays (10-280 μs). According to this, the proposed pressure profile could be more efficient for SWL than conventional tandem shock waves. Similar results were obtained for a ten times smaller bubble.  相似文献   

18.
High-density controllable bubble structures are produced in the vicinity of radiating surface by artificially implant nuclei. Two kinds of typical cavitation structures produced by artificially implant nuclei are investigated. The focusing action and the physical origin of jet-induced cone-like bubble structure are analyzed. The sonochemical activity of cavitation structures is measured by using the standard method of potassium iodide dosimetry. The controllability of cavitation bubble cluster in the acoustic field is also discussed in this work.  相似文献   

19.
Boiling histotripsy is a promising High-Intensity Focused Ultrasound (HIFU) technique that can be used to induce mechanical tissue fractionation at the HIFU focus via cavitation. Two different types of cavitation produced during boiling histotripsy exposure can contribute towards mechanical tissue destruction: (1) a boiling vapour bubble at the HIFU focus and (2) cavitation clouds in between the boiling bubble and the HIFU source. Control of the extent and degree of mechanical damage produced by boiling histotripsy is necessary when treating a solid tumour adjacent to normal tissue or major blood vessels. This is, however, difficult to achieve with boiling histotripsy due to the stochastic formation of the shock scattering-induced inertial cavitation clouds. In the present study, a new histotripsy method termed pressure-modulated shockwave histotripsy is proposed as an alternative to or in addition to boiling histotripsy without inducing the shock scattering effect. The proposed concept is (a) to generate a boiling vapour bubble via localised shockwave heating and (b) subsequently control its extent and lifetime through manipulating peak pressure magnitudes and a HIFU pulse length. To demonstrate the feasibility of the proposed method, bubble dynamics induced at the HIFU focus in an optically transparent liver tissue phantom were investigated using a high speed camera and a passive cavitation detection systems under a single 10, 50 or 100 ms-long 2, 3.5 or 5 MHz pressure-modulated HIFU pulse with varying peak positive and negative pressure amplitudes from 5 to 89 MPa and −3.7 to −14.6 MPa at the focus. Furthermore, a numerical simulation of 2D nonlinear wave propagation with the presence of a boiling bubble at the focus of a HIFU field was conducted by numerically solving the generalised Westervelt equation. The high speed camera experimental results showed that, with the proposed pressure-modulated shockwave histotripsy, boiling bubbles generated by shockwave heating merged together, forming a larger bubble (of the order of a few hundred micron) at the HIFU focus. This coalesced boiling bubble then persisted and maintained within the HIFU focal zone until the end of the exposure (10, 50, or 100 ms). Furthermore, and most importantly, no violent cavitation clouds which typically appear in boiling histotripsy occurred during the proposed histotripsy excitation (i.e. no shock scattering effect). This was likely because that the peak negative pressure magnitude of the backscattered acoustic field by the boiling bubble was below the cavitation cloud intrinsic threshold. The size of the coalesced boiling bubble gradually increased with the peak pressure magnitudes. In addition, with the proposed method, an oval shaped lesion with a length of 0.6 mm and a width of 0.1 mm appeared at the HIFU focus in the tissue phantom, whereas a larger lesion in the form of a tadpole (length: 2.7 mm, width: 0.3 mm) was produced by boiling histotripsy. Taken together, these results suggest that the proposed pressure-modulated shockwave histotripsy could potentially be used to induce a more spatially localised tissue destruction with a desired degree of mechanical damage through controlling the size and lifetime of a boiling bubble without the shock scattering effect.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号