首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The objective of the study is to elucidate the effect of ultrasound treated salt solution on curing of pork meat. The interactions of salt (NaCl) solutions of 3 and 25% with the proteins of pork meat are studied. High intensity ultrasound operating at 20 kHz was used. The differential scanning calorimetry (DSC), NMR spin-spin relaxation time, unfrozen water and water diffusion coefficient measurements were carried out in meat cured with ultrasound treated and untreated salt solutions. The effect of ultrasonication was most evident from measured spin-spin relaxation times T21, the rate of chemical exchange of water protons k and the amount of unfrozen water Wunf in the meat. The measured diffusion coefficient of water Dw in meat cured with ultrasound treated and control salt solution did not show significant difference. The nuclear magnetic resonance (NMR) relaxation data, differential scanning calorimetry (DSC) and the diffusion coefficient data reliably show that the possible action of ultrasound to salt solution was manifested on the first 2 days of the experiment with a 3% salt solution.  相似文献   

2.
To study the potential usefulness of ultrasound (0, 30, and 60 min) and sodium bicarbonate (0 % and 0.2 %) combination on the reduced-salt pork batters, the changes in water holding capacity, gel properties, and microstructure were investigated. The pH, salt-soluble proteins solubility, cooking yield, and b* values of reduced-salt pork batters significantly increased (P < 0.05) with the increase in ultrasound time and the addition of sodium bicarbonate, leading to the hardness, springiness, cohesiveness, and chewiness significantly increased (P < 0.05). Furthermore, the use of ultrasound-assisted sodium bicarbonate treatment caused the reduced-salt pork batters to form a typical spongy structure with more evenly cavities. Due to the initial relaxation time of T21 and T22 were shorter, and the peak ratio of P21 was increased and P22 was decreased after ultrasound-assisted sodium bicarbonate treatment, implying that the mobility of water was reduced. Thus, the use of ultrasound-assisted sodium bicarbonate treatment enabled reduced-salt pork batters to have better gel characteristics and higher cooking yield.  相似文献   

3.
In this study combined effect of ultrasound-induced acoustic cavitation and microbubbles during meat brining on pork loin (Longissimus dorsi) was evaluated. Cylindrical shape (diameter 15 mm, height 80 mm) pork loin samples were cut and immersed in 200 g L-1 NaCl brine and treated with the following brining methods for 180 min: static brining (SB), ultrasound assisted brining (US) and ultrasound combined with microbubbles in brine (USMB). Ultrasound was generated with 20 kHz frequency, 5,09 W/cm2 maximum intensity and 100 W maximum power. Microbubbles in brine were produced by a gas–liquid mixing pump. Effect of ultrasound and microbbubles on NaCl content and diffusion in pork loin, mass balance, water binding capacity (WBC), protein denaturation and meat tissue microstructure were evaluated. The US and USMB brinings enhanced the NaCl diffusion into meat compared to meat brined under static conditions. The constant diffusion coefficient (D) model precisely described the NaCl diffusion kinetics during brinings. The ultrasound and microbbubles resulted in microscopic pores on the surface of myofibers. Decreasing WBC was observed for all brining methods. Myosin was not detectable in any of the brining methods. Denaturation temperature of actin showed a decreasing tendency with increasing brining time independently the brining methods.  相似文献   

4.
The present study aimed to investigate the impact of ultrasound-assisted tumbling (UAT; 20 kHz, 100, 300, 500 and 700 W) with different treatment time (30, 60, 90 and 120 min) on the diffusion and distribution of NaCl as well as the change of pork texture properties during curing. Results showed that in comparison with the single tumbling (ST), the NaCl content and the NaCl diffusion coefficient were increased along with UAT treatment (P < 0.05). The scanning electron microscopy and the energy dispersive X-ray analysis showed that UAT treatment changed the microstructure of pork which may facilitate the NaCl dispersion homogeneously. In addition, the moderate UAT treatment of 300 W with 60 min could significantly improve the tumbling yield, water-holding capacity and textural properties of pork compared with the ST treatment (P < 0.05). Meanwhile, in comparison with the ST group, protein extraction was considerably increased after UAT (300 and 500 W) treated for 120 min (P < 0.05). Our study demonstrated that UAT treatment could effectively promote the penetration and distribution of NaCl and improve pork meat quality via facilitating the extraction of meat protein.  相似文献   

5.
The objective of this study was to explore the mechanisms of power ultrasound (PUS, 150 and 300 W) and treatment time (30 and 120 min) on the water-holding capacity (WHC) and tenderness of beef during curing. Beef muscle at 48 h post mortem was subjected to PUS treatment at a frequency of 20 kHz. Analysis of compression loss and shear force showed that PUS-assisted curing significantly increased the WHC and the tenderness of beef compared to static brining (p < 0.05). According to the analysis of LF-NMR, PUS treatment could increase the P21 values which indicated an improvement in water-binding ability of beef muscle. SDS-PAGE and LC-ESI-MS/MS analysis suggested that PUS induced moderate oxidation of myosin causing polymerization, which may contribute to increased water retention. On the other hand, an increased tenderness of beef is suggested by the increased MFI values and proteolysis of desmin and troponin-T. Transmission electron microscopy (TEM) further supported the effects of PUS on WHC and tenderness changes due to the swelling and disruption of myofibrils. Thus, these results provide knowledge about the mechanism for improving WHC and tenderness of beef by PUS curing, which could be employed as an emerging technology for various meat curing processes.  相似文献   

6.
Ultrasound treatment has been a good hurdle technique for meat curing processing, where both physical and chemical consequences can be involved towards final quality of obtained products. However, the specific correlation between ultrasound parameters and muscle fiber fragmentation and myofibrillar microstructural changes during curing deserve further evaluation. In present study, we comparatively studied the effect of ultrasound-assisted brining (UAB) and static brining (SB) on the muscle proteolysis events and microstructural/morphological variation of porcine meat as well as the physicochemical indices and histological characteristics. The results showed that UAB (20 kHz, 315 W for 1 h) could markedly enhance the muscle proteolysis with higher free-/peptide-bound alpha-amino-nitrogen (α-NH2-N) content (P < 0.05) than SB treatment and greatly improved the fragmentation of muscle fiber tissues of cured meat. Meanwhile, UAB processing favored more opening structures of myofibrillar proteins with more hydrophobic groups being exposed. The quantitative histological analysis revealed that, compared with SB treatment, UAB could significantly increase the gap between muscle fibers and the swelling of the perimysium (P < 0.01), proving an efficient curing process with better textural and water holding properties.  相似文献   

7.
The effects of ultrasound combined (25 kHz, 400 ± 20 W/L, ultrasonic time of 5, 10 and 15 min) with soy protein isolate processing on gelling properties of low-salt silver carp surimi, aggregation and conformation of myofibrillar protein were investigated. The results revealed that, compared with only adding soy protein isolate components, ultrasound-assisted soy protein isolate had a more obvious effect on the protein structure in low-salt surimi, leading to the decrease in α-helix and total sulfhydryl contents, and the increase in β-sheet content and protein solubility. As a result, more proteins participated in the formation of the gel network, and significant improvements in hardness, gel strength and water-holding capacity of the low-salt surimi gel were observed, while the myosin heavy chain in SDS-PAGE was weakened. The low-field NMR results showed that the initial relaxation time of T2 was apparently shorter, the free water content decreased and the bound water content increased under the action of ultrasound. Scanning electron microscope observation found that the surimi gel treated by ultrasound exhibited smaller holes, and had a more stable and denser network structure. In conclusion, the results of our work demonstrated that ultrasound combined with soy protein isolate can significantly improve the gel quality properties of low-salt silver carp.  相似文献   

8.
Food-borne methicillin-resistance Staphylococcus aureus (MRSA) has caused significant health threats and economic loss in livestock and poultry products. Garlic essential oil (GEO) is an effective antibacterial agent but presents strong instability and hydrophobicity. In this study, GEO in water nanoemulsion (GEON) with good stability was produced by emulsification technique of high-power ultrasound. Its antibacterial activity and underlying mechanism against MRSA isolated from retailed pork were investigated. Results showed that ultrasonic treatment significantly reduced the particle size of GENO from 820.3 to 215.0 nm as time increased from 0 to 10 min. Comparatively, GEON of 10 min ultrasound was more stable than other GEONs (0, 1, 5 min) during 30 d storage. It also displayed good thermal stability and relatively good ion stability (NaCl, MgCl2, and glucose). Antibacterial analysis showed that GEON (10 min) exhibited the best anti-MRSA activity among all GEONs, and the minimum inhibitory concentration of GEO in this nanoemulsion was 0.125 % (1.25 mg/mL). Treatment of GEON (10 min) significantly suppressed the cell proliferation of MRSA, which was mainly achieved by damaging the cell membrane as evidenced by membrane depolarization and considerable leakage of intracellular nucleic acids and protein. Laser scanning confocal microscope and scanning electron microscopy showed that treatment of GEON (10 min) significantly altered the membrane integrity and severely damaged the cellular membrane and structure. The present work illustrated that GEON produced by ultrasonic emulsification is a promising alternative to inhibit the contamination and spread of MRSA in livestock and poultry products.  相似文献   

9.
The effects of low-frequency ultrasonic pre-treatment in water/oil medium simulated system on the improved processing efficiency and quality of microwave-assisted vacuum fried potato chips were investigated. The water medium system (distilled water and 5% NaCl osmotic solution) and oil medium system (90 °C) were designed with different power levels of ultrasound to simulate the ultrasonic conditions. Results showed that the changes of moisture content, water loss, solid gain and dielectric properties of potato slices were facilitated by the ultrasonic treatment. LF-NMR analysis showed the binding force between the moisture and structure in the material was significantly (p < 0.05) weakened. The changes become greater with the increase of ultrasonic power levels. Microscopic channels and disruptions were induced on the microstructure by the ultrasonic treatment. The effective moisture diffusivity of vacuum fried (VF) potato chips was increased by about 56.2%-67.0% and 53.9% with the combination of microwave energy and the ultrasonic pre-treatment in water and oil medium simulated system, respectively. The oil uptake, hardness, shrinkage, total color change and water activity of vacuum fried samples were significantly (p < 0.05) decreased by the assist of microwave energy combined ultrasonic pre-treatment.  相似文献   

10.
Effects of high intensity ultrasound (HIU) on physicochemical properties of tilapia (Oreochromis niloticus) actomyosin in low NaCl concentrations were investigated. The protein content extracted in low NaCl concentrations (0.1–0.3 M NaCl) increased with increasing HIU intensity up to 20.62 W/cm2 (p < 0.05). The effect of HIU on actomyosin extractability in high NaCl concentrations (0.6 and 1.2 M NaCl) was less obvious. Ca2+-ATPase activity and total sulfhydryl (SH) group content decreased in both 0.2 and 0.6 M NaCl. HIU showed more pronounced effect on oxidation of the SH groups in 0.6 M NaCl, while the reactive SH content at 0.2 M NaCl increased after a prolonged exposure to HIU, suggesting conformational changes induced by HIU. Surface hydrophobicity of actomyosin in 0.6 M NaCl increased with increasing ultrasonic intensity and exposure time to a higher degree than that in 0.2 M NaCl. A greater absolute value of the zeta potential of actomyosin subjected to HIU were also observed. The HIU treatments decreased the turbidity of actomyosin incubated at 40 and 60 °C. A drastic increase in the solubility of myosin heavy chain (MHC) and actin with 0.2 M NaCl were evident when HIU treatments were applied, but degradation of MHC occurred in both 0.2 and 0.6 M NaCl. Based on particle size and microstructure, actomyosin in 0.6 M NaCl underwent more disruption by HIU than that in 0.2 M NaCl. HIU induced protein unfolding and protein dissociation, enabling better extraction in a lower NaCl concentration.  相似文献   

11.
The objective of the present study was to assess the effects of ultrasound pretreatment on the quality of dry-cured yak meat. The ultrasonic power with 0, 200, 300 and 400 W (ultrasonic frequency of 20 kHz) were used to assist processing of dry-cured yak meat. The meat quality, nutrient substances, sensory quality, electronic nose, electronic tongue and volatile compounds of dry-cured yak meat were determined. The results indicated that the moisture content and hardness value of ultrasonic treatment group was significantly lower compared to the control group (P < 0.05). Ultrasonic treatment increased the value of b*, and decreased the value of L*, a*, pH, chewiness, melting temperature and enthalpy. Springiness value significantly increased from control group to 300 W of ultrasonic power group. Shear force significantly decreased with the increase of ultrasonic power (P < 0.05). Ultrasonic treatment had no effect on the TVB-N content, but it could increase the TBARS content. Ultrasonic treatment could significantly increase the essential FAA (EFAA) and total FAA (P < 0.05). In addition, the saturated fatty acid (SFA) content significantly increased with the increase of ultrasonic power (P < 0.05). Ultrasound treatment negatively affected the meat’s color, smell, and taste but increased its tenderness and the overall acceptability. It also significantly increased alcohols and aldehydes contents (P < 0.05), which were consistent with the measurement of electronic nose and electronic tongue. The results demonstrated that the the appropriate ultrasonic power assisted in the processing improves quality of dry-cured yak meat, particularly for the power of 300 W.  相似文献   

12.
The influences of dual-frequency slit ultrasound (DFSU) pretreatment with various working parameters on the enzymolysis efficiency and conformational characteristics of corn gluten meal (CGM) were studied. Results indicated that under the conditions of ultrasonic power density of 80 W/L, time of 30 min, ultrasonic intermittent ratio of 5:2 s/s, temperature of 30 °C, and substrate concentration of 50 g/L, the relative enzymolysis efficiency (REE) of CGM reached a maximum of 21.05%, and the protein dissolution rate was 68.50%. In addition, ultrasonication had considerable impact on the conformation of CGM and consequently improved the susceptibility to alcalase proteolysis. Changes in free sulfhydryl (SHF) and disulfide bonds (SS) groups indicated spatial conformation of CGM was altered following sonication (sonochemical) treatment. Fourier Transform Infrared Spectrum (FITR) analysis showed a reduction in α-helix and β-turn content; and an increase in β-sheet and random coil content of CGM. Alterations in the particle size, particle size distribution, microstructure and surface roughness (Ra, Rq) indicated generation of smaller and more uniform protein fragments of CGM by sonochemical pretreatment. The proposed mechanism of sonicated CGM was elaborated. Our findings suggest that using DFSU in pretreating CGM may be an efficacious approach to enhance proteolysis.  相似文献   

13.
A novel alternated ultrasonic and electric pulse enhanced electrochemical process was developed and used for investigating its effectiveness on the degradation of p-nitrophenol (PNP) in an aqueous solution. The impacts of pulse mode, pH, cell voltage, supporting electrolyte concentration, ultrasonic power and the initial concentration of PNP on the performance of PNP degradation were evaluated. Possible pathway of PNP degradation in this system was proposed based on the intermediates identified by GC–MS. Experimental results showed that 94.1% of PNP could be removed at 2 h in the dual-pulse ultrasound enhanced electrochemical (dual-pulse US-EC) process at mild operating conditions (i.e., pulse mode of electrochemical pulse time (TEC) = 50 ms and ultrasonic pulse time (TUS) = 100 ms, initial pH of 3.0, cell voltage of 10 V, Na2SO4 concentration of 0.05 M, ultrasonic powder of 48.8 W and initial concentration of PNP of 100 mg/L), compared with 89.0%, 58.9%, 2.4% in simultaneous ultrasound enhanced electrochemical (US-EC) process, pulsed electrochemical (EC) process and pulsed ultrasound (US), respectively. Moreover, energy used in the dual-pulse US-EC process was reduced by 50.4% as compared to the US-EC process. The degradation of PNP in the pulsed EC process, US-EC process and dual-pulse process followed pseudo-first-order kinetics. Therefore, the dual-pulse US-EC process was found to be a more effective technique for the degradation of PNP and would have a promising application in wastewater treatment.  相似文献   

14.
Effects of ultrasound combined with sodium bicarbonate assisted curing (USC), sodium bicarbonate assisted curing (SC) and traditional wetting curing (WC) on curing efficiency and tenderization of the chicken breast meat were investigated. Compared with SC and WC treatments, the highest marinade uptake and chloride content were observed in USC treatment (P < 0.05). The lowest shear forces and the largest myofibril fragmentation indexes (MFI) were also obtained in USC chicken (6.99 N and 61.65) (P < 0.05), which were related to the larger gaps and cavities between the adjacent muscle bundles and the more broken muscle fibers in chicken by ultrasonic, followed by SC (8.01 N and 56.82) and WC (9.50 N and 52.23). Furthermore, the USC and SC decreased significantly the cooking loss and surface hydrophobicity of chicken (P < 0.05). Meanwhile, the USC and SC treatments gradually decreased the low-field nuclear magnetic resonance (LF-NMR) relaxation times (T21 and T22), which was related to the lower fluid losses in chicken. These results indicated that the USC and SC treatments had greater impact on the improvement of meat tenderization, water holding capacity and curing efficiency than WC, especially the USC was the best curing method.  相似文献   

15.
Nowadays, there is increasing interest in developing strategies for the efficient and sustainable use of animal by-products, such as pork liver. In order to stabilize the product, a prior dehydration stage may be required due to its high perishability. The water removal process of pork liver is energy costly and time consuming, which justifies its intensification using novel technologies. In this sense, the aim of this study was to assess the effect of the airborne application of power ultrasound on the hot air-drying of pork liver. For that purpose, drying experiments were carried out at 30, 40, 50, 60 and 70 °C on pork liver cylinders at 2 m·s−1 with (US) and without ultrasonic application (AIR). The drying process was modeled from the diffusion theory and, in the dried pork liver, the protein solubility was analyzed in order to determine the effect of drying on the protein quality. The ultrasound application increased the drying rate, shortening the drying time by up to 40% at 30 °C. The effect of power ultrasound at high temperatures (60 and 70 °C) was of lesser magnitude. Drying at 70 °C involved a noticeable reduction in the protein solubility for dried liver, while the impact of ultrasound application on the solubility was not significant (p > 0.05).  相似文献   

16.
Currently, the conventional atmospheric pressure-based and vacuum-based tumbling processes have a limited improvement on the chicken characteristic attributes during the marination process. In view of this, through a breathing (pressure change) tumbling strategy, ultrasonication (40 kHz, 140 W) was applied to improve tenderness, taste, and microstructure of chicken by a redesigned tumbler. The results showed that the tumbling with the breathing action and ultrasonication significantly enhanced the marinating absorptivity, tenderness and taste, and accelerated the degradation of myosin light chain. Free peptides (from 1465.9 ± 34.6 to 4725.7 ± 43.2 μg/mL) and amino acids (from 1.503 ± 0.096 to 2.593 ± 0.109 mg/mL) rose evidently for the control and the breathing tumbling treatment assisted by ultrasound respectively. Raman analysis revealed that strength of disulfide bonds declined from 0.731 ± 0.006 to 0.607 ± 0.011 a.u. and the conversion from α-helix (decreased by 67.23%) into β-fold (increased by 1573%) conformation occurred. Low field NMR analysis indicated that the content of immobilized water increased from 77385 ± 14 to 137011 ± 106 au·ms by integral calculus. Scanning and transmission electron microscopies clearly showed a prospective rupture of myofibers, myofibrils, and lysosomes. Overall, as a potential alternative, the breathing ultrasonic tumbling means improved the marinating efficiency and characteristics of marinated chicken breast.  相似文献   

17.
For the first time, purple corn pericarp (PCP) was converted to polyphenol-rich extract using two-pot ultrasound extraction technique. According to Plackett-Burman design (PBD), the significant extraction factors were ethanol concentration, extraction time, temperature, and ultrasonic amplitude that affected total anthocyanins (TAC), total phenolic content (TPC), and condensed tannins (CT). These parameters were further optimized using the Box-Behnken design (BBD) method for response surface methodology (RSM). The RSM showed a linear curvature for TAC and a quadratic curvature for TPC and CT with a lack of fit > 0.05. Under the optimum conditions (ethanol (50%, v/v), time (21 min), temperature (28 °C), and ultrasonic amplitude (50%)), a maximum TAC, TPC, and CT of 34.99 g cyanidin/kg, 121.26 g GAE/kg, and 260.59 of EE/kg, respectively were obtained with a desirability value 0.952. Comparing UAE to microwave extraction (MAE), it was found that although UAE had a lower extraction yield, TAC, TPC, and CT, the UAE gave a higher individual anthocyanin, flavonoid, phenolic acid profile, and antioxidant activity. The UAE took 21 min, whereas MAE took 30 min for maximum extraction. Regarding product qualities, UAE extract was superior, with a lower total color change (ΔE) and a higher chromaticity. Structural characterization using SEM showed that MAE extract had severe creases and ruptures, whereas UAE extract had less noticeable alterations and was attested by an optical profilometer. This shows that ultrasound, might be used to extract phenolics from PCP as it requires lesser time and improves phenolics, structure, and product qualities.  相似文献   

18.
The effects of power ultrasound (US) pretreatment on the preparation of soy protein isolate hydrolysate (SPIH) prepared at the same degree of hydrolysis (DH) of 12 % were measured. Cylindrical power ultrasound was modified into mono-frequency (20, 28, 35, 40, 50 kHz) ultrasonic cup coupled with an agitator to make it applicable for high density SPI (soy protein isolate) solutions (14 %, w/v). A comparative study of the alterations of the hydrolysates molecular weight, hydrophobics, antioxidants and functional properties change as well as their relation were explored. The results showed that under the same DH, ultrasound pretreatment decelerated the degradation of protein molecular mass and the decrease rate of the degradation lessened with the increase of ultrasonic frequency. Meanwhile, the pretreatments improved the hydrophobics and antioxidants properties of SPIH. Both surface hydrophobicity (H0) and relative hydrophobicity (RH) of the pretreated groups increased with the decrease of ultrasonic frequency. Lowest frequency (20 kHz) ultrasound pretreatment had the most improved emulsifying properties and water holding capacities, although decrease in the viscosity and solubility were found. Most of these alterations were correspondence toward the change in hydrophobics properties and molecular mass. In conclusion, the frequency selection of ultrasound pretreatment is essential for the alteration of SPIH functional qualities prepared at the same DH.  相似文献   

19.
The aim of the study was to investigate the impact of sodium alginate (ALG) pretreated by ultrasound on the enzyme activity, structure, conformation and molecular weight and distribution of papain. ALG solutions were pretreated with ultrasound at varying power (0.05, 0.15, 0.25, 0.35, 0.45 W/cm2), 135 kHz, 50 °C for 20 min. The maximum relative activity of papain increased by 10.53% when mixed with ALG pretreated by ultrasound at 0.25 W/cm2, compared with the untreated ALG. The influence of ultrasound pretreated ALG on the conformation and secondary structure of papain were assessed by fluorescence spectroscopy and circular dichroism spectroscopy. The fluorescence spectra revealed that ultrasound pretreated ALG increased the number of tryptophan on papain surface, especially at 0.25 W/cm2. It indicated that ultrasound pretreatment induced molecular unfolding, causing the exposure of more hydrophobic groups and regions from inside to the outside of the papain molecules. Furthermore, ultrasound pretreated ALG resulted in minor changes in the secondary structure of the papain. The content of α-helix was slightly increased after ultrasound pretreatment and no significant change was observed at different ultrasound powers. ALG pretreated by ultrasound enhanced the stability of the secondary structure of papain, especially at 0.25 W/cm2. The free sulfhydryl (SH) content of papain was slightly increased and then decreased with the increase of ultrasonic power. The maximum content of free SH was observed at 0.25 W/cm2, under which the content of the free SH increased by 6.36% compared with the untreated ALG. Dynamic light scattering showed that the effect of ultrasound treatment was mainly the homogenization of the ALG particles in the mixed dispersion. The gel permeation chromatography coupled with the multi-angle laser light scattering photometer analysis showed that the molecular weight (Mw) of papain/ALG was decreased and then increased with the ultrasonic pretreatment. Results demonstrated that the activity of immobilized papain improved by ultrasonic pretreatment was mainly caused by the variation of the conformation of papain and the effect of interactions between papain and ALG. This study is important to explain the intermolecular interactions of biopolymers and the mechanism of enzyme immobilization treated by ultrasound in improving the enzymatic activity. As expected, ALG pretreated by appropriate ultrasound is promising as a bioactive compound carrier in the field of immobilized enzyme.  相似文献   

20.
In this study, the influence of ultrasound-assisted resting at different power on the rheological properties, water distribution and structural characteristics of dough with 50 % surimi as well as the texture, cooking and microstructure characteristics of the surimi-wheat noodles were investigated. Compared with the fermentation control (FC) noodles, the microstructure, cooking and texture characteristics of noodles (≤24.00 W/L) were significantly (p < 0.05) improved after ultrasonic treating. As the increasing of ultrasonic power, compared to FC, the creep strain, recovery strain, semi-bound water, and free sulfhydryl (SH) contents of surimi-wheat dough decreased at first and then increased significantly (p < 0.05). The α-helix and β-turn content of dough increased at first and then decreased after ultrasonic treatment, while the β-sheet was reversed. The surimi-wheat dough network structure was improved by ultrasonic treatment, with the densest and continuous pore size in 21.33 W/L, but the dough structure was broken and loose (>21.33 W/L), which consisted of the hardness, elasticity, chewiness, resistant and cooked quality of surimi-wheat noodles. This work elucidated the effect of ultrasonic power on the performance of surimi-wheat dough, and the optimal ultrasound power was obtained, thereby improving the nutritional properties and the quality of surimi-wheat noodles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号