共查询到4条相似文献,搜索用时 0 毫秒
1.
The high-melting-point joints by transient-liquid-phase are increasingly playing a crucial role in the die bonding for the high temperature electronic components. In this study, three kinds of Sn/Ni composite solder pastes composed of different sizes of Ni particles were synthesized to accelerate metallurgical reaction among Sn/Ni interfaces under the ultrasonic-assisted transient liquid phase (U-TLP) soldering. The temperature evolution, microstructure and mechanical property in joints composed by these composite solder pastes with or without ultrasonic energy were systemically investigated. The intermetallic joint consisted of high-melting-point sole Ni3Sn4 intermetallic compound with a little residual Ni was obtained under the conditions of no pressure and lower power (200 W) in a high-temperature duration of only 10 s, its shear strength was up to 45.3 MPa. Ultrasonic effects significantly accelerated the reaction among the interfaces of liquid Sn and solid Ni, which attributed to the temperature rise caused by acoustic cavitation because of large number of liquid/solid interfaces during U-TLP, resulting in accelerated solid/liquid interfacial diffusion and growth of intermetallic compounds. This intermetallic joint formed by U-TLP soldering has a promising potential for applications in high-power device packaging. 相似文献
2.
The distribution and size of particles in particle-reinforced aluminum matrix composites are crucial to the mechanical properties of the composites. In this paper, 2 wt.% TiB2/2195 composites were prepared by ultrasonic-assisted in-situ casting technology, and the samples' phase composition, microstructure, and mechanical properties were tested. The results showed that: compared with the remelted matrix, the stomatal defects in the composites disappeared, and the grains were refined, but the second phase structure and TiB2 particles agglomerated significantly when no ultrasonic treatment (UT) was applied. The UT made the grains further refined, the area fraction of the coarse second phase network decreased, the concentrations of Ti and Cu elements in the grains increased, and more TiB2 particles entered the grains. At the same time, the formation of TiB2 particles and UT increased the dislocation density in the composites and promoted the precipitation of the T1 phase. With UT for 180 s, the TiB2 particles were evenly distributed, and the size was the smallest. The tensile strength, yield strength, and elongation were increased by 115.4 %, 49.8 %, and 342.9 %, respectively, compared to the remelted matrix, and by 30.9 %, 21.8 %, and 67.2 %, respectively, compared to the composite without UT. The mechanism of the synergistic effect of UT and TiB2 to enhance the mechanical properties of composites was also discussed. 相似文献
3.
利用银铜钛(Ag-Cu-Ti)膏状钎料采用真空钎焊的方法对两种不同石墨和铜合金进行钎焊连接实验,研究了钎焊温度、中间缓冲层、母材尺寸等工艺参数对接头性能的影响。采用自行设计模具对接头的剪切强度进行了测试,利用扫描电镜和配带的X射线能谱分析仪分析了接头界面组织形貌及元素物相成分。研究结果表明:当钎焊温度为910℃,保温时间10min时,Ag-Cu-Ti膏状钎料能够与石墨和无氧铜两侧母材形成良好的结合界面;与GA石墨相比,阿泰克石墨与无氧铜接头强度更高;采用1mm无氧铜做中间缓冲层钎焊石墨和铬锆铜时,能有效缓解钎焊热应力,接头强度有明显提高。 相似文献
4.
Jinglei Zhu Haitao Wang Shouquan Zhang Hua Zhang Xingke Zhao 《Applied Surface Science》2008,254(20):6687-6692
This study is aimed to introduce an innovative precursor pyrolysis process to prepare Ti-Fe-Ni-C compound powder and to discuss and evaluate the relationship between microstructure and properties of TiC-Fe36Ni cermet coatings in-situ synthesized by reactive plasma spraying (RPS) of these compound powders. The main characteristic of the pyrolysis process is that sucrose (C12H22O11) is used as a source of carbon as well as a binder to bind reactive constituent particles. The compound powder with high bonding strength can avoid the problem that reactive constituent particles are separated during spraying. The TiC-Fe36Ni cermet coatings present typical splat-like morphology of thermally sprayed coatings and consist of two different areas: one is a composite reinforcement area where spherical fine TiC particles (100-500 nm) homogeneously distribute within the Fe36Ni matrix; the other is an area of TiC accumulation. The surface hardness of the coatings reaches about 90 ± 2 (HR15N). The maximum and average microhardness values of the coatings are 1930 HV0.2 (Vicker Hardness) and 1640 HV0.2, respectively. The average bonding strength of the coatings is about 62.3 MPa. The wear resistance property of the coatings is much more than that of Ni60 alloys coatings. 相似文献