首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以SBA-15为载体,采用浸渍法制备了不同Ag含量的Ag/SBA-15,通过N2吸附-脱附、X射线衍射、扫描电子显微镜、高分辨透射电子显微镜、X射线光电子能谱和电感耦合等离子体质谱对催化剂进行了表征。将Ag/SBA-15用于苯甲醇气相选择性催化氧化合成苯甲醛,研究了反应条件对转化率和选择性的影响。结果表明,Ag/SBA-15具有均一的一维孔道结构、较厚的孔壁(3-5 nm)及较大的比表面积(411-541 m2/g),其规整纳米空间的限域作用使一定负载量的Ag以纳米尺寸均匀分散于介孔SBA-15孔道内,增加了活性组分的比表面积。亲核性氧物种从Ag到SBA-15表面的氧溢流,提高了低温下Ag/SBA-15对苯甲醇气相选择性氧化合成苯甲醛的催化性能。5.3% Ag/SBA-15中的Ag粒径为5-6 nm,且均匀分散于载体孔道中,反应温度为220℃时,苯甲醇转化率为87%,苯甲醛选择性为95%;240℃时,苯甲醇转化率和苯甲醛选择性分别高达94%和97%;并在240-300℃范围内,其催化活性和选择性保持不变,表现出了良好的温度耐受能力。催化剂经活化再生可以连续使用40 h,选择性基本保持不变。  相似文献   

2.
张召艳  王英  李娴  戴维林 《催化学报》2014,(11):1846-1857
研究了不同Au/Pd摩尔比的AuPd/CeO2双金属催化剂在苯甲醇氧化制苯甲酸及其钠盐反应中的催化活性,利用XRD,UV-Vis DRS,TEM和XPS等手段对催化剂的结构进行了系统考察.结果表明,Au-Pd纳米颗粒以合金形式分散在CeO2载体上,不同Au/Pd摩尔比会影响催化剂表面活性物种的粒径大小和尺寸分布,并改变催化剂表面物种的组成.Au-Pd之间的电子效应和协同效应显著影响其催化活性.当Au/Pd摩尔比为3时催化剂表现出最好的催化活性,苯甲酸产率可达92%.此外,双金属催化剂的催化活性显著优于单金属催化剂,主要归因于Au和Pd之间的协同效应.AuPd/CeO2催化剂还具有良好的稳定性,Au/Pd摩尔比为3的AuPd/CeO2催化剂使用7次后仍然具有较高的催化活性.  相似文献   

3.
A series of heteropolytungstates has been synthesized and utilized as catalysts to catalyze oxidation of benzyl alcohol with aqueous hydrogen peroxide.The results indicated that three of these catalysts showed the properties of reaction-controlled phase- transfer catalysis,and they had excellent catalytic ability to the oxidation of benzyl alcohol.No other by-products were detected by gas chromatography.Once the hydrogen peroxide was consumed completely,the catalyst precipitated from solvent,and the results of the catalyst recycle showed that the catalyst had high stability.  相似文献   

4.
The investigation comprised an evaluation of the use of the catalyst 1%Ru/TiO2 in the liquid-phase conversion of toluene to benzyl alcohol and benzaldehyde. Transmission electron microscopy (TEM) and N2 adsorption-desorption isotherms were deployed to delineate the properties of the supported catalysts. The findings indicated a good catalytic performance by 1%Ru/TiO2 under green reaction conditions. This performance was deemed a consequence of the spread and loading of Ru on the TiO2. The reaction conditions such as temperature, reaction time, type of support, catalyst preparation method, and activating quantity) were optimized to achieve superior reaction parameters. Catalyst produced via sol-immobilization has higher activity than the one prepared with the wet-impregnation method, which lead to a transformation rate of up to 9.5%, with the selectivity for benzyl alcohol at 92%.  相似文献   

5.
在传统催化反应中,分子氧催化氧化烷烃生成目标产物的选择性最低,常产生副产物以及大量的COx和水,因需要复杂的分离过程而导致流程的投资成本高.因此,在过去几十年里,针对此类反应的研究以提高选择性为首要目标,但克服这一挑战的任务依然艰巨.在此类反应中,甲苯经O2选择性催化氧化是制备苯甲醛的最佳途径,但从未实现工业化,其中的...  相似文献   

6.
Graphene supported PdCu bimetallic nanoparticles were synthesized through coreduction of PdCl2 and CuCl2·H2O. X-ray diffraction (XRD), X-ray photoelectron (XPS) and transmission electron microscopy (TEM) were performed to characterize the structures. The complex could be used as an efficient catalyst for reduction of nitroarenes to the corresponding anilines in the presence of NaBH4 and recycled up to six runs without significant loss of activity.  相似文献   

7.
Co-salen functionalized on graphene with an average pore size of 27.7 nm as a heterogeneous catalyst exhibited good catalytic activity and recyclability in cyclohexene oxidation.  相似文献   

8.
This study aimed to combine the advantages of homogeneous catalysis and heterogeneous catalysis by immobilizing TEMPO into a water-soluble temperature responsive polymer. The supported TEMPO was water soluble and displayed excellent activity in the selective oxidation of alcohols below the LCST and can be easily recovered.  相似文献   

9.
Tungstate salt with imidazolium framework is found to be a recoverable and heterogeneous system favouring the highly selective oxidation of primary benzylic alcohols to corresponding aldehydes with 30% H2O2 as a green oxidant under neutral aqueous reaction conditions. Furthermore, in order to demonstrate the recyclability of the catalyst, it was recovered and efficiently reused in seven succeeding reaction cycles without any significant loss. The use of green solvent, very short reaction time with excellent yields and recyclability of the catalyst make this protocol highly advantageous.  相似文献   

10.
吴藏藏  郑丽  徐秀峰 《分子催化》2016,30(6):532-539
用溶胶-凝胶法制备了不同组成的Mn-Al和Cu-Mn-Al复合氧化物两组催化剂,用于苯甲醇选择氧化反应.用X射线衍射(XRD)、N2物理吸附(BET)、扫描电镜(SEM)、H_2程序升温还原(H_2-TPR)、O_2程序升温脱附(O_2-TPD)和X射线光电子能谱(XPS)技术对催化剂进行了结构表征,考察了催化剂组成对催化活性的影响.结果表明:以甲苯为溶剂,O_2为氧化剂,353 K反应5 h,Mn_2Al和Cu_(0.3)Mn_(0.7)Al_2催化剂上的苯甲醇转化率分别为36.6%和40.9%,苯甲醛选择性均为100%.进一步研究表明:催化剂活性与其H2还原性和O_2吸附性有关,高活性的催化剂吸附氧多,生成的活性氧易参与反应.  相似文献   

11.
Phosphotungstic acid (PTA) was successfully supported on synthesized mesoporous carbon (MC) through impregnating method to yield a series of PTA/MC catalysts, the content of PTA from 16 to 43 wt %. The catalysts were characterized by FTIR spectroscopy, X-ray diffraction, N2 adsorption-desorption isotherm tests and transmission electron microscopy. The characterization data revealed that intact Keggin ion of PTA is kept in the support, and PTA is located equably inside the pores of MC. The catalytic activities of these catalysts were tested in selective oxidation of benzyl alcohol to benzaldehyde using 30% hydrogen peroxide as oxidant. The results indicated that 28 wt % PTA/MC catalyst with high specific surface area (474 m2/g) and uniform pore size (6.4 nm) possess the best catalytic activity (conversion of 82.6% and selectivity of 94.0%) among all prepared catalysts.  相似文献   

12.
This paper reports the preparation of a nano-Co(II)-catalyst (NCC) by anchoring of Co ions on immobilized bipyridylketone over the nano-sized SiO2/Al2O3 mixed oxides. The nano-Co(II)-catalyst has been characterized by elemental analysis, BET, FT-IR, DR UV–vis and SEM. The catalytic activity of the catalyst towards the oxidation of ethylbenzene, cyclohexene, and benzylalcohol to different chemically and pharmaceutically important products were evaluated with tert-butyl hydroperoxide (TBHP) in the absence of solvent. Under optimized conditions, the nano-catalyst proved highly selective towards the acetophenone, 2-cyclohexene-1-one and benzaldehyde as reaction products, with excellent conversion rates.  相似文献   

13.
以中孔MCM-41为载体制得均一分散的粒径约5nm的Ru纳米粒子催化剂MCM-41-Ru,采用电感耦合等离子体、透射电镜、能量散射谱、X射线衍射和N2吸附-脱附法对其进行了表征,并将其作为可重复使用高效催化剂用于超声辅助芳烃选择氧化反应.结果表明,在超声辐射和KBrO3为氧化剂条件下,MCM-41-Ru催化剂加速了氧化反应,并以较高产率得到目的产物.回收的催化剂用于下次反应时活性保持不变,但其活性中心性质发生变化.  相似文献   

14.
In this study, manganese porphyrin was grafted on the surface of graphene oxide nanosheets via covalent bonding to produce a heterogeneous catalyst. The prepared nanocomposite was characterized using X-ray diffraction, UV–vis spectroscopy, scanning electron microscopy, Fourier transform infrared, and thermogravimetric analysis. Atomic absorption spectroscopy was also used to determine the amount of the loaded catalyst. The catalytic efficiency of the immobilized Mn-porphyrin was investigated for the aerobic oxidation of alkenes and saturated alkanes in acetone under mild reaction conditions. The prepared heterogenized catalyst displays superior catalytic performance as compared to the homogeneous catalyst. Moreover, the excellent turnover number (more than 31,767) achieved for the oxidation of styrene indicates the high longevity of the supported catalyst. The catalyst structure is preserved well after the oxidation reaction and is simply reused at least five times, without any significant loss of the catalytic efficiency.  相似文献   

15.
[PW11ZnO39]5? was immobilized on activated carbon and characterized using Fourier transform infrared, X‐ray diffraction, Brunauer–Emmett–Teller and elemental analysis techniques. Effective oxidation of various alcohols with hydrogen peroxide was performed in the presence of this catalyst. Easy separation of the catalyst from the reaction mixture, cheapness, high activity and selectivity, stability as well as retained activity in subsequent catalytic cycles make this supported catalyst suitable for small‐scale synthesis. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
Nanoparticles (2–10 nm) of palladium have been deposited on single wall carbon nanotubes (SWNT) by spontaneous reduction from Pd(OAc)2 or from oxime carbapalladacycle. These catalysts exhibit higher catalytic activity than palladium over activated carbon (Pd/C) for the Heck reaction of styrene and iodobenzene and for the Suzuki coupling of phenylboronic and iodobenzene. This fact has been attributed as reflecting the dramatic influence of the size particle on the activity of the palladium catalyst for CC bond forming reactions as compared to other reaction types less demanding from the point of view of the particle size. Thus, in contrast to the Heck and Suzuki reactions, Pd/C is more active than palladium nanoparticles deposited on SWNT for the catalytic oxidation by molecular oxygen of cinnamyl alcohol to cinnamaldehyde and for the hydrogenation of cinnamaldehyde to 3-phenylpropionaldehyde.  相似文献   

17.
Noble-metal-free photocatalysts with high and stable performance provide an environmentally-friendly and cost-efficient route for green organic synthesis.In this work,CdS nanoparticles with small particle size and different amount were successfully deposited on the surface of covalent organic frameworks(COFs).The deposition of suitable content of CdS on COFs could not only modify the light adsorption ability and the intrinsic electronic properties,but also enhance the photocatalytic activity and cycling performance of CdS for the selective oxidation of aromatic alcohols under visible light.Especially,COF/CdS-3 exhibited the highest yield(97.1%) of benzalde hyde which is approximately 2.5 and 15.9 times as that of parental CdS and COF,respectively.The results show that the combination of CdS and COF can improve the utilization of visible light and the separation of photo-generated charge carriers,and COF with the π-conjugated system as supports for CdS nanoparticles could provide efficient electron transport channels and improve the photocatalytic performance.Therefore,this kind of COF-supported photocatalysts with accelerated photo-induced electrons and charge-carrier separation between semiconductors possesses great potentials in future green organic synthesis.  相似文献   

18.
采用H2S高温硫化WO3的方法制备了一系列WS2/WO3光催化剂,利用X射线粉末衍射仪、紫外可见光谱仪分析了产物的结构及光吸收性能,考察了WS2/WO3光催化剂光催化选择性氧化苯甲醇制备苯甲醛的性能,讨论了WS2的含量、反应时间、反应液pH对光催化选择性氧化反应过程的影响.结果表明:与WO3和经深度硫化的WO3相比,适当的硫化能显著改善催化剂对苯甲醇的选择性氧化行为,反应时间及pH对苯甲醇的转化率及生成苯甲醛的选择性均有重要影响.  相似文献   

19.
在活性炭负载金属钌(Ru/C)催化剂上实现了5-羟甲基糠醛的高效选择氧化.以甲苯为反应溶剂,在383 K和2.0 MPa O2的反应条件下,2,5-呋喃二甲醛(DFF)收率高达95.8%.与活性炭负载的具有相似粒径的Pt,Rh,Pd,Au等其它贵金属催化剂相比,Ru/C具有更加优良的活性和DFF选择性.同时Ru/C催化剂结构稳定,具有良好的重复使用性能.在相似的反应条件下,采用水代替甲苯作为溶剂,同时添加少量水滑石固体碱,可便捷地将主要产物从DFF调变为5-甲酰基-2-呋喃甲酸或2,5-呋喃二甲酸,显示出Ru/C催化剂在控制5-羟甲基糠醛选择氧化反应产物方面的优异性能.  相似文献   

20.
A new heterogeneous Schiff base copper(II) complex was prepared by reacting amino‐polystyrene with salicylaldehyde followed by complexation with cupric chloride. The structure of this immobilized complex has been established on the basis of scanning electron microscope (SEM), thermogravimetric analysis (TGA), elemental analysis employing atomic absorption spectroscopy (AAS), and spectrometric methods like diffuse reflectance spectra of solid (DRS) and fourier transform infrared spectroscopy (FTIR). Catalytic activity of this polymer anchored Cu(II) complex was tested by studying the oxidation of cyclohexene, styrene, and benzyl alcohol in the presence of tert‐ butylhydroperoxide as oxidant. Several parameters such as solvent, oxidant, reaction time, reaction temperature, amount of catalyst, and substrates oxidant ratio were varied to optimize the reaction condition. Under optimized reaction conditions, cyclohexene gave a maximum of 74% conversion with three major products 2‐cyclohexene‐1‐one, cyclohexene epoxide, and 2‐cyclohexene‐1‐ol. The conversions of styrene and benzylalcohol proceed with 53% and 77%, respectively. Styrene gives styrene epoxide as the major product while benzylalcohol gives benzaldehyde as the major product. The catalytic results reveal that polymer anchored copper(II) Schiff base complex can be recycled more than five times without much loss in the catalytic activity. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号