首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
韩秀峰  万蔡华 《物理学报》2018,67(12):127201-127201
自旋(磁)逻辑器件具有数据非易失性、CMOS电路兼容性、操作速度快等优点,是开发计算存储相融合的非冯·诺依曼计算机架构的理想候选方案之一.本文进一步演示基于自旋霍尔效应的自旋逻辑方案.利用自旋霍尔效应不仅能够实现基本的布尔逻辑功能和数据存储功能,还可以利用自旋轨道力矩磁矩翻转的对称性要求、偏置磁场要求等,进一步实现自旋逻辑器件的可编程和多功能特性.利用这些特点,同一自旋霍尔逻辑器件可以实现"与"、"或"、"非"、"与非"、"或非"等功能.因为这些特性,基于自旋霍尔效应的自旋逻辑单元有望成为后续自旋逻辑器件和电路的核心器件,推动后者的持续开发与广泛应用.  相似文献   

2.
K. Maki 《Physics letters. A》1973,46(3):173-174
Spin waves in the A phase of the superfluid 3He are studied within a microscopic model. It is shown that the spin wave mode with a phonon like dispersion and a gap exists through out the A phase.  相似文献   

3.
An experimental scheme for studying spin wave propagation across thin magnetic film samples is proposed. The scheme is based upon the creation of picosecond pulses of strongly localized effective magnetic field via ultrafast optical irradiation of a specially deposited exchange bias or exchange spring layer. The spin waves are excited near the irradiated surface before propagating across the thickness of the sample. They are then detected near the other surface either within the finite optical skin depth using the linear magneto-optical Kerr effect in metallic samples or by the magnetic second harmonic generation. The experiment can facilitate investigations of propagating spin waves with wavelengths down to several nanometers and frequencies in excess of hundreds of Gigahertz. An experiment upon a periodically layered nanowire (a finite cross-section magnonic crystal) is numerically simulated, although the sample might equally well be a continuous film or an array of elements (e.g. nanowires) that either have uniform composition or are periodically layered as in a magnonic crystal. The experiments could be extended to study domain wall-induced spin wave phase shifts and can be used for the creation of spin wave magnetic logic devices.  相似文献   

4.
This paper discusses nanomagnetic structures enabling the manipulation of propagating spin waves. We address in particular how domain walls, or more generally speaking inhomogeneous spin configurations, enhance the control of spin-wave transmission and thereby the functionality of magnonic devices. Three different microscopic mechanisms are outlined, considering an interference device, a spin-wave bus and a magnonic crystal. Inhomogeneous spin configurations are argued to shift the spin-wave phase, guide spin waves in nanochannels and allow for reprogrammable spin-wave band structures in periodic nanostructures, respectively. Such devices and functionalities are relevant for further developments in magnonics.  相似文献   

5.
We propose to measure the Sagnac effect for counterpropagating de Broglie waves of π+ or mesons whose spin is equal to zero. The latter circumstance allows us to avoid the nonreciprocal phase shift of counterpropagating waves, which is related to both the Thomas precession (the effect of the special relativity theory) and the Larmor precession of the spin of elementary particles due to the presence of magnetic fields. Among the advantages of using π mesons, we should mention their electric charge, which allows us to use the well-known devices for focusing, separation, and joining the particle beam, and their comparatively long lifetime. A modulation method for processing the interference signal is proposed. The maximum sensitivity of the above method, which is limited by the shot noise, is estimated. Institute of Applied Physics of the Russian Academy of Sciences, Nizhny Novgorod, Russia. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 41, No. 6, pp. 767–774, June, 1998.  相似文献   

6.
自旋霍尔纳米振荡器利用电流产生的自旋轨道力矩驱动磁性薄膜中磁矩进行高频进动,能在微纳尺度下实现全电学调控的相干自旋波和微波信号,是一类新型的纳米自旋电子学器件,在信息存储、处理和通信方面具有广泛的应用前景。基于强自旋轨道矩效应,人们近期在各类铁 磁/非磁重金属构成的双层薄膜结构中,已实现了多种不同自旋波模式的电学激发和调控,并对 其复杂的非线性动力学特性进行了深入的探究。基于这些前期的研究结果与最新的进展,我们在 本综述中对“对三角”结构的纳米间隙型、“蝴蝶结”型、纳米线型、垂直纳米点接触型以及阵 列等具有各类器件结构的自旋霍尔纳米振荡器所体现出来的丰富非线性动力学特性进行了详细讨 论与归纳,并对其在新型低能耗量子磁振子自旋器件和非冯诺依曼架构的自旋型人工神经网络计 算方面的潜在应用也进行了探讨。  相似文献   

7.
Based upon the spin wave theory, the influence of the size of a three-dimensional Heisenberg system on its thermodynamic properties was studied. It is found that the specific heat increases due to the finite size and free surface of the system. For a magnetic film with finite thickness, the interaction of spin waves was also discussed. There exist three additional scattering processes, namely, the scattering between spin waves with wave-vectors parallel to the surface of the film (two-dimensional spin wave), the scattering between two and three-dimensional waves, and the scattering between those waves with the same component in the direction along the thickness of the film. As a result, the T4 term, arising from the coupling of spin waves, in the expression of the specific heat of the system, splite into three parts proportional to T5/2,T7/2 and T4, respectively. Here T is the temperature.  相似文献   

8.
9.
Spin precession of positive muons in chromium in zero applied magnetic field is reported for the first time. The observations cover the temperature range from about 2.5 K to 10 K and thus pertain to the so-called longitudinal spin-density wave (LSDW) state of antiferromagnetic Cr. The conclusions that may be drawn from the existence of one rather sharp spin precession line are discussed, among them the estimateD μ=2.4·10−14 m2 s−1 for the muon diffusivity at 4 K. Considerable evidence exists for a strong interactions of μ+ with the charge-density waves that are likely to accompany the LSDWs in Cr.  相似文献   

10.
It has been shown that the instability of uniform spin precession in the bulk of the 3He-B superfluid phase is due to the joint action of the anisotropy of the velocities of spin waves and dipole interaction. In the leading approximation in the ratio of the Leggett frequency to the Larmor frequency, the growth increments of the amplitudes of spin waves for all of the possible decay channels have been found. The maximum increment has been determined for all of the angles of spin deviation from the equilibrium orientation. The minimum temperature to which precession is stable has been estimated.  相似文献   

11.
夏静  韩宗益  宋怡凡  江文婧  林柳蓉  张溪超  刘小晰  周艳 《物理学报》2018,67(13):137505-137505
磁斯格明子是一种具有准粒子特性的拓扑纳米磁畴壁结构.由于磁斯格明子具有较好的稳定性和新奇的动力学特性,并可被磁场、电场、电流等方式调控,有望成为高密度、低耗能、非易失性信息存储及逻辑运算的新兴信息载体.自2009年磁斯格明子首次被实验观测到至今,已有多种基于磁斯格明子的器件概念和原型器件被提出.本文对基于磁斯格明子应用的研究进展进行综述,对现阶段几种具有代表性的磁斯格明子器件应用进行简要介绍、分析和总结,包括基于磁斯格明子的赛道存储器件、逻辑计算器件、类晶体管功能器件和纳米级微波振荡器;同时阐述了几种可能的通过磁斯格明子表达二进制信息元的方法;并展望了磁斯格明子的其他潜在应用以及未来基于磁斯格明子器件应用的发展方向.  相似文献   

12.
Spin polarization of charge carriers in La0.65Ca0.35MnO3 (LCMO) is studied using point-contact Andreev spectroscopy. Pb and MgB2 are used to make superconducting electrodes. In all cases, the transport spin polarization obtained from the conductivity of LCMO/superconductor point contacts does not exceed 80–85%. Different models of the current flow through the superconductor-ferromagnetic metal contact and possible reasons for noncomplete spin polarization of a current in manganites are explored. The level of spin polarization observed in Sharvin contacts (contact area ~104 Å2) is most naturally explained in terms of a model that suggests separation of the crystal into nanosized magnetic phases, only one of which is a ferromagnetic metal with full spin polarization of charge carriers.  相似文献   

13.
Spin-dependent electron temperature effect on the spin pump in a single quantum dot connected to Normal and/or Ferromagnetic leads are investigated with the help of master equation method. Results show that spin heat accumulation breaks the tunneling rates balance at the thermal equilibrium state thus the charge current and the spin current are affected to some extent. Pure spin current can be obtained by adjusting pumping intensity or chemical potential of the lead. Spin heat accumulation of certain material can be detected by measuring the charge current strength in symmetric leads architectures. In practical devices, spin-dependent electron temperature effect is quite significant and our results should be useful in quantum information processing and spin Caloritronics.  相似文献   

14.
We review recent work in the field of organic spintronics, focusing on our own contributions to this field. There are two principle magnetoresistance effects that occur in organic devices. (i) Organic magnetoresistance (OMAR), which occurs in nonmagnetic organic semiconductor devices. For example, in devices made from the prototypical small molecule Alq3 OMAR reaches values of 10% or more at room temperature. (ii) Organic spin‐valve effects that occur in devices that employ ferromagnetic electrodes for spin‐polarized current injection and detection. We undertake an analysis of these two types of magnetoresistance with the goal of identifying the dominant spin‐scattering mechanism. Analysis of OMAR reveals that hyperfine coupling is the dominant spin‐coupling mechanism. Spin–orbit coupling, on the other hand, is important only in organic semiconductor materials containing heavy atoms. We explore the reasons why spin–orbit coupling is relatively unimportant in hydrocarbon materials. Next, we present a theory for spin diffusion in disordered organic semiconductors based on hyperfine coupling, taking into account a combination of incoherent carrier hopping and coherent spin precession in the random hyperfine magnetic fields. We compare our findings with experimental values for the spin‐diffusion length. Finally, we demonstrate a criterion that allows the determination whether the organic spin‐valves operate in the tunneling or injection regimes. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
Room temperature ferromagnetism in both transition-metals doped and undoped semiconductor thin films and nanostructures challenges our understanding of the magnetism in solids. In this report, we performed the magnetic measurement and Andreev reflection spectroscopy study on undoped Indium-Tin oxide (ITO) thin films and bulk samples. The magnetic measurement results of thin films show that the total magnetization/cm2 is thickness independent. Prominent ferromagnetism signal was also discovered in bulk samples. Spin polarized electron transports were probed on ITO thin film/superconductor interface and bulk samples surface/superconductor interface. Based on the magnetic measurement results and spin polarization measurement data, we propose that the ferromagnetism in this material originates from the surface spin polarization and this surface polarization may also explain the room temperature ferromagnetism discovered in other undoped oxide semiconductor thin films and nanostructures.  相似文献   

16.
We describe how the spin coherence time of a localized electron spin in solids, i.e., a solid state spin qubit, can be prolonged by applying designed electron spin resonance pulse sequences. In particular, the spin echo decay due to the spectral diffusion of the electron spin resonance frequency induced by the non-Markovian temporal fluctuations of the nuclear spin flip-flop dynamics can be strongly suppressed using multiple-pulse sequences akin to the Carr-Purcell-Meiboom-Gill pulse sequence in nuclear magnetic resonance. Spin coherence time can be enhanced by factors of 4-10 in GaAs quantum-dot and Si:P quantum computer architectures using composite sequences with an even number of pulses.  相似文献   

17.
We discuss the theory of spin waves in non-degenerate ultra-cold gases, and compare various methods which can be used to obtain appropriate kinetic equations. We then study non-hydrodynamic situations, where the amplitude of spin waves is sufficiently large to bring the system far from local equilibrium. The full position and momentum dependence of the distribution function must then be retained. In the first part of the article, we compare two general methods which can be used to derive a kinetic equation for a dilute gas of atoms (bosons or fermions) with two internal states (treated as a pseudo-spin 1/2). The collisional methods are in the spirit of Boltzmann's original derivation of his kinetic equation where, at each point of space, the effects of all sorts of possible binary collisions are added. We discuss two different versions of collisional methods, the Yvon-Snider approach and the S matrix approach. The second method uses the notion of mean field, which modifies the drift term of the kinetic equation, in the line of the Landau theory of transport in quantum liquids. For a dilute cold gas, it turns out that all these derivations lead to the same drift terms in the transport equation, but differ in the precise expression of the collision integral and in higher order gradient terms. In the second part of the article, the kinetic equation is applied to spin waves (or internal conversion) in trapped ultra-cold gases. Numerical simulations are used to illustrate the strongly non-hydrodynamic character of the spin waves recently observed with trapped 87Rb atoms. The decay of the phenomenon, which takes place when the system relaxes back towards equilibrium, is also discussed, with a short comment on decoherence. In two appendices we calculate the Wigner transform of the interaction term in the S matrix method, to first order in gradients; Appendix A.1 treats the case of spin-independent interactions, Appendix A.2 that of spin-dependent interactions.Received: 17 April 2003, Published online: 17 July 2003PACS: 05.30.-d Quantum statistical mechanics - 51.10.+y Kinetic and transport theory of gases - 75.30.Ds Spin waves  相似文献   

18.
A solution-processable, high-concentration transparent ZnO nanoparticle (NP) solution was successfully synthesized in a new process. A highly transparent ZnO thin film was fabricated by spin coating without vacuum deposition. Subsequent ultra-short-pulsed laser annealing at room temperature was performed to change the film properties without using a blanket high temperature heating process. Although the as-deposited NP thin film was not electrically conductive, laser annealing imparted a large conductivity increase and furthermore enabled selective annealing to write conductive patterns directly on the NP thin film without a photolithographic process. Conductivity enhancement could be obtained by altering the laser annealing parameters. Parametric studies including the sheet resistance and optical transmittance of the annealed ZnO NP thin film were conducted for various laser powers, scanning speeds and background gas conditions. The lowest resistivity from laser-annealed ZnO thin film was about 4.75×10−2 Ω cm, exhibiting a factor of 105 higher conductivity than the previously reported furnace-annealed ZnO NP film and is even comparable to that of vacuum-deposited, impurity-doped ZnO films within a factor of 10. The process developed in this work was applied to the fabrication of a thin film transistor (TFT) device that showed enhanced performance compared with furnace-annealed devices. A ZnO TFT performance test revealed that by just changing the laser parameters, the solution-deposited ZnO thin film can also perform as a semiconductor, demonstrating that laser annealing offers tunability of ZnO thin film properties for both transparent conductors and semiconductors.  相似文献   

19.
We propose in theory a curved nanowire structure that can both serve as a spin inverter and a spin polarizer driven by a periodic Rashba spin–orbit coupling (SOC) and a uniform Dresselhaus SOC. The curved section of the U-shaped quasi-one dimensional nanowire with an arc of radius R and circumferential length πR is divided into segments of equal length initially having only its inherent homogeneous Dresselhaus SOC. Then a Rashba-type SOC is applied at every alternating segment. By tuning the Rashba SOC strength and the incident electron energy, this device can flip the spin at the output of an incoming spin-polarized electron. On the other hand, this same device acts as a spin filter for an unpolarized input for which an outgoing electron with a non-zero polarization can be achieved without the application of an external magnetic field. Moreover, the potential modulation caused by the periodic Rashba SOC enables this device to function as an attenuator for a certain range of incident electron energies that can make the probability current density drop to 10−4 of its otherwise magnitude in other regimes.  相似文献   

20.
路飞平  王倩  周翔 《中国物理 B》2013,22(3):37202-037202
A 10-nm thickness molybdenum tri-oxide (MoO3) thin film was used as the interconnector layer in tandem organic light-emitting devices (OLEDs). The tandem OLEDs with two identical emissive units consisting of N,N'-bis(naphthalen-1-yl)-N,N'-bis(phenyl)-benzidine (NPB)/tris(8-hydroxyquinoline) aluminum (Alq3) exhibited current efficiency-current density characteristics superior to the conventional single-unit devices. At 20 mA/cm2, the current efficiency of the tandem OLEDs using the interconnector layers of MoO3 thin film was about 4.0 cd/A, which is about twice of that of the corresponding conventional single-unit device (1.8 cd/A). The tandem OLED showed a higher power efficiency than the conventional single-unit device for luminance over 1200 cd/m2. The experimental results demonstrated that a MoO3 thin film with a proper thickness can be used as an effective interconnector layer in tandem OLEDs. Such an interconnector layer can be easily fabricated by simple thermal evaporation, greatly simplifying the device processing and fabrication processes required by previously reported interconnector layers. A possible explanation was proposed for the carrier generation of the MoO3 interconnector layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号