首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Sonication and dielectric barrier discharge (DBD) plasma are sustainable emerging food processing technologies. The study investigates the impact of sonication, DBD-plasma, and thermal treatment (TT) on wheat sprout juice. The obtained results indicated a significant (p < 0.05) increase in chlorophyll, total phenolics, flavonoids, DPPH assay, and ORAC assay after DBD-plasma (40 V) and sonication (30 mins) treatment as compared to TT and untreated samples. Both emerging technologies significantly (p < 0.05) reduce the polyphenol oxidase and peroxidase activities, but the TT sample had the highest reduction. Moreover, the synergistic application of both technologies significantly reduced the E. coli/Coliform, aerobics, yeast and mold up to the 2 log reduction, but the TT sample had a complete reduction. DBD-plasma and sonication processing significantly decreased (p < 0.05) the particle size, reducing apparent viscosity (η) and consistency index (K); while increasing the flow behavior (n), leading to higher stability of wheat sprout juice. To assess the impact of emerging techniques on nutrient concentration, we used surface-enhance Raman spectroscopy (SERS) as an emerging method. Silver-coated gold nano-substrates were used to compare the nutritional concentration of wheat sprout juice treated with sonication, DBD-plasma, and TT-treated samples. Results showed sharp peaks for samples treated with DBD-plasma followed by sonication, untreated, and TT. The obtained results, improved quality of wheat sprout juice, and lower microbial and enzymatic loads were confirmed, showing the suitability of these sustainable processing techniques for food processing and further research.  相似文献   

2.
Ultrasonic treatment is an emerging food processing technology that has growing interest among health-conscious consumers. Freshly squeezed Chokanan mango juice was thermally treated (at 90 °C for 30 and 60 s) and sonicated (for 15, 30 and 60 min at 25 °C, 40 kHz frequency, 130 W) to compare the effect on microbial inactivation, physicochemical properties, antioxidant activities and other quality parameters. After sonication and thermal treatment, no significant changes occurred in pH, total soluble solids and titratable acidity. Sonication for 15 and 30 min showed significant improvement in selected quality parameters except color and ascorbic acid content, when compared to freshly squeezed juice (control). A significant increase in extractability of carotenoids (4–9%) and polyphenols (30–35%) was observed for juice subjected to ultrasonic treatment for 15 and 30 min, when compared to the control. In addition, enhancement of radical scavenging activity and reducing power was observed in all sonicated juice samples regardless of treatment time. Thermal and ultrasonic treatment exhibited significant reduction in microbial count of the juice. The results obtained support the use of sonication to improve the quality of Chokanan mango juice along with safety standard as an alternative to thermal treatment.  相似文献   

3.
Ultrasounds are being considered an excellent alternative technology in juice preservation. Yet, when combined with heat treatment, the process seems to be further intensified. This work aimed to evaluate and compare the impact of ultrasounds and heat treatments, when applied alone or in combination, on Staphylococcus aureus survival in orange juice. Inoculated commercial pasteurized orange juice was treated at different times at 20, 30, 40, 50 and 60 °C. SEM analyses were applied to identify morphological changes in S. aureus cells appearance. The microbial inactivation data were fitted using two mathematical models, depending on the behaviour observed.Sonication at 20, 30, and 40 °C induced 4.02 ± 0.52, 3.80 ± 0.49 and 4.30 ± 0.74 log cycles reduction of S. aureus after treatments of 90, 60 and 60 min, respectively. The heat treatments at the same temperatures had no impact on S. aureus survival. When 50 and 60 °C were applied, more than 5-log reductions were attained for both thermosonication and heat treatments alone. A synergistic effect was observed between sonication and high temperatures. At 50 °C, the thermosonication reduced the treatment time from 60 to 35 min and the microbial load from 5.14 ± 0.08 to 10.76 ± 0.28 log cycles reduction, compared to heat treatment alone. Results from SEM images showed that cells undergo membrane damage during sonication exposure. This was observed by collapsed cells, cell disruption, and holes in the cell’s membrane.Thermosonication proved to be a viable alternative to thermal pasteurization of orange juice since milder treatments can be safely applied, improving the final product quality.  相似文献   

4.
Cactus pear (Opuntia ficus-indica) fruit is a berry with a tasty pulp full of seeds that constitutes about 10–15% of the edible pulp. In Mexico, cactus pear is mainly consumed fresh, but also has the potential to be processed in other products such as juice. The objective of this study was to evaluate the effect of different ultrasound conditions at amplitude levels ranging (40% and 60% for 10, 15, 25 min; 80% for 3, 5, 8, 10, 15 and 25 min) on the characteristics of purple cactus pear juice. The evaluated parameters were related with the quality (stability, °Brix, pH), microbial growth, total phenolic compounds, ascorbic acid and antioxidant activity (ABTS, DPPH and % chelating activity) of purple cactus pear juices. The ultrasound treatment for time period of 15 and 25 min significantly reduced the microbial count in 15 and 25 min, without affecting the juice quality and its antioxidant properties. Juice treated at 80% of amplitude level showed an increased of antioxidant compounds. Our results demonstrated that sonication is a suitable technique for cactus pear processing. This technology allows the achievement of juice safety and quality standards without compromising the retention of antioxidant compounds.  相似文献   

5.
Fresh apple juice treated with ultrasound (for 0, 30, 60 and 90 min, at 20 °C, 25 kHz frequency) was evaluated for different physico-chemical, Hunter color values, cloud value, antioxidant capacity, scavenging activity on 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical, ascorbic acid, total phenolics, flavonoids, flavonols and microbial characteristics. No significant effect of sonication was observed on pH, total soluble solids (°Brix) and titratable acidity of apple juice. Sonication significantly improved ascorbic acid, cloud value, phenolic compounds, antioxidant capacity, DPPH free radical scavenging activity and differences in Hunter color values. Moreover, significant reduction in microbial population was observed. Findings of the present study suggested that sonication treatment could improve the quality of apple juice. It may successfully be employed for the processing of apple juice with improved quality and safety from consumer’s health point of view.  相似文献   

6.
Among different novel technologies, sonochemistry is a sustainable emerging technology for food processing, preservation, and pesticide removal. The study aimed to probe the impact of high-intensity ultrasonication on chlorothalonil fungicide degradation, reduction pathway, and bioactive availability of spinach juice. The chlorothalonil fungicide-immersed spinach juice was treated with sonication at 360 W, 480 W, and 600 W, 40 kHz, for 30 and 40 min at 30 ± 1 °C. The highest reduction of chlorothalonil fungicide residues was observed at 40 min sonication at 600 W. HPLC-MS (high-performance liquid chromatography-mass spectroscopy) analysis revealed the degradation pathway of chlorothalonil and the formation of m-phthalonitrile, 3-cyno-2,4,5,6-tetrachlorobenamide, 4-dichloroisophthalonitrile, trichloroisophtalonitrile, 4-hydoxychlorothalonil, and 2,3,4,6-tetrachlorochlorobenzonitrile as degradation products. High-intensity sonication treatments also significantly increased the bioavailability of phenolic, chlorophyll, and anthocyanins and the antioxidant activity of spinach juice. Our results proposed that sonication technology has excellent potential in degrading pesticides through free radical reactions formation and pyrolysis. Considering future perspectives, ultrasonication could be employed industrially to reduce pesticide residues from agricultural products and enhance the quality of spinach juice.  相似文献   

7.
《Ultrasonics sonochemistry》2014,21(4):1343-1348
A study was initiated with the objective of evaluating the effects of sonication treatment on important quality parameters of extract of Bursa of Fabricius. Sonication of extract was done (frequency 20 kHz and various amplitude levels) at 0 °C for 10 min, 30 min, 50 min, respectively. As results, the yield of bursa peptides significantly increased (p < 0.05). Then we found sonicated bursa extract promoted the content of bursin and the CFU pre-B formation, exerted immunomodulatory function on antigen-specific immune responses in C57/BL6 mice immunized with inactivated Japanese encephalitis b virus (JEV) vaccine, including enhancing JEV-specific antibody and cytokine production, T-cell immunophenotyping and lymphocyte proliferation. Findings of the present study suggested the sonication treatment of Bursa of Fabricius could improve the yield as well as the quality of bursa peptides, indicating that sonication is effective in processing of bursa extract and could be a potential process for future immuno-pharmacological use.  相似文献   

8.
Sagittaria sagittifolia L. is a well-known plant, belongs to the Alismataceae family. Sonication can improve the functional properties of starch; hence, the aim of this study was to develop ultrasonically modified arrowhead starch (UMAS) using a sophisticated and eco-friendly tri-frequency power ultrasound (20/40/60 kHz) method at 300, 600, and 900 W for 15 and 30 min. Significant (p < 0.05) increases in swelling power, solubility, and water and oil holding capacities were achieved. FTIR spectroscopy corroborated the ordered, amorphous, and hydrated crystals of the sonicated samples. Increases in sonication frequency and power led to significant (p < 0.05) increases in onset gelatinization temperatures. Scanning electron microscopic analysis of sonicated samples showed superficial cracks and roughness on starch granules appeared in a sonication power-dependent manner compared with that of untreated sample. Overall, the ultrasonically-treated samples showed improved physicochemical properties, which could be useful for industrial applications.  相似文献   

9.
The degradation of phorate in apple juice by sonication was investigated in the present study. Results showed that sonication was effective in eliminating phorate in apple juice, and the ultrasonic power and sonication time significantly influenced the degradation of phorate (< 0.05). The degradation of phorate followed the first-order kinetics model well. Phorate-oxon and phorate sulfoxide were identified as the degradation products of phorate by gas chromatography-mass spectrometry (GC-MS). Moreover, the toxicity of apple juice samples spiked with phorate was significantly reduced by sonication (< 0.05). The quality indexes of apple juice including pH, titratable acidity (TA), electrical conductivity (EC), total soluble solids (TSS), and the contents of sucrose, glucose and fructose were not affected by sonication, and no visible difference in color was observed between the sonicated samples and the control.  相似文献   

10.
A study was initiated with the objective of evaluating the effects of sonication treatment on important quality parameters of extract of Pinus massoniana pollen. Sonication of extract was done (frequency 20 kHz and various amplitude levels) for 10, 30, 50 min, respectively. As results, total polysaccharide, phenolics and flavonoids significantly increased (P < 0.05). And sonicated P. massoniana pollen displays strong immuno-stimulating activity by increasing proliferations of splenic lymphocytes and subsets of CD4+ T cells (CD3+CD4+), CD8 T cells (CD3+CD8+), and increased Ig secretion. Sonicated P. massoniana pollen also showed anti-tumor function by inhibition of tumor cell proliferation, inhibition of ROS production, up-regulation of GSH/GSSG ration, up-regulating the gene expression of P53, Bax and down-regulating the gene expression of Bcl-2. Findings of the present study suggested the sonication treatment of P. massoniana pollen could improve the quality and bioactivity of P. massoniana pollen, indicating that sonication is effective in processing of pollen and could be a potential process in tumor prevention and treatment.  相似文献   

11.
A study was initiated with the objective of evaluating the effects of sonication treatment on quality characteristics of apple juice such as polyphenolic compounds (chlorogenic acid, caffeic acid, catechin, epicatechin and phloridzin), sugars (fructose, glucose and sucrose), mineral elements (Na, K, Ca, P, Mg, Cu and Zn), total carotenoids, total anthocyanins, viscosity and electrical conductivity. The fresh apple juice samples were sonicated for 0, 30 and 60 min at 20 °C (frequency 25 kHz and amplitude 70%), respectively. As results, the contents of polyphenolic compounds and sugars significantly increased (P < 0.05) but the increases were more pronounced in juice samples sonicated for 30 min whereas, total carotenoids, mineral elements (Na, K and Ca) and viscosity significantly increased (P < 0.05) in samples treated for 60 min sonication. Losses of some mineral elements (P, Mg and Cu) also occurred. Total anthocyanins, Zn and electrical conductivity did not undergo any change in the sonicated samples. Findings of the present study suggest that sonication technique may be applied to improve phytonutrients present naturally in apple juice.  相似文献   

12.
The suitability of some non-linear kinetic models (Weibull {with or without tail}, Log-linear, Log-linear shoulder {with or without tail}, Biphasic linear, Logistic, Multi-target and Single-target models) were evaluated to determine the inactivation kinetics of inoculated E. coli, and natural microbiota (i.e. mesophilic aerobic bacteria, and mold and yeast) on cherry tomato treated with fixed multi-frequency ultrasound. Almost all the studied model fitted well (R2 ≥ 0.9) for the inactivation kinetics; however, the Weibull, Log-linear shoulder, and Biphasic linear model showed the highest statistical parameters (0.9 ≤ adj. R2 ≤ 0.99 and smallest RMSE and SSE values). All the three models could be used to compare the kinetic behavior of E. coli and the first two models for the kinetic behavior of mesophilic aerobic bacteria and mold and yeast during sonication treatment. Two distinctive inactivation curves were obtained for the mono-frequency and the multi-frequency (dual and tri-frequency) for all the microbial inactivation. The remarkable results obtained for dual and tri-frequency sonication shows to be an effective and promising alternative to the traditional microbial inactivation techniques and the common practice of using ultrasound with other sanitizing methods.  相似文献   

13.
Suspension of nanocrystalline cellulose (NCC) produced from bleached cotton by controlled sulphuric acid hydrolysis was treated with low frequency ultrasound at 20 kHz and 60% amplitude for 0, 1, 2, 5 and 10 min and the effects of sonication on the properties of both the cellulose nanocrystals and their aqueous suspensions were investigated. Furthermore, a series of nanocellulose films were manufactured from the suspensions that were sonicated for different periods of time and tested. Laser diffraction analysis and transmission electron microscopy proved that sonication not only disintegrated the large NCC aggregates (Dv50 14.7 μm) to individual nanowhiskers with an average length and width of 171 ± 57 and 17 ± 4 nm, respectively, but also degraded the nanocrystals and yielded shorter and thinner particles (118 ± 45 and 13 ± 3 nm, respectively) at 10-min sonication. The ultrasound-assisted disintegration to nano-sized cellulose whiskers decreased the optical haze of suspensions from 98.4% to 52.8% with increasing time from 0 to 10 min, respectively. Sonication of the suspensions significantly contributed to the preparation of films with low haze (high transparency) and excellent tensile properties. With the increasing duration of sonication, the haze decreased and the tensile strength rose gradually. Irrespectively of sonication, however, all films had an outstanding oxygen transmission rate in a range of 5.5–6.9 cm3/m2 day, and a poor thermal stability.  相似文献   

14.
Sonication improves kasturi lime (Citrus microcarpa) juice quality   总被引:1,自引:0,他引:1  
Freshly squeezed kasturi lime fruit juice was sonicated (for 0, 30 and 60min at 20°C, 25kHz frequency) to evaluate its impact on selected physico-chemical and antioxidant properties, such as pH, °Brix, titratable acidity, Hunter color values (L(?), a(?), b(?)), ascorbic acid, DPPH radical scavenging activity, total phenolics, antioxidant capacity, flavonoids and flavonols. Additionally, the effect of sonication treatments on the microbial load (TPC, yeast and mold) were also evaluated. Sonication of juice samples for 60min showed enhancement in most of the bioactive compounds compared to samples treated for 30min and control samples (untreated). Significant reductions in the microbial load corresponding to sonication time were also recorded. Results of the present study indicate that sonication may be employed as a suitable technique for kasturi lime juice processing, where antioxidant and other bioactive compound retention or enhancement is desired, along with the achievement of safety and quality standards.  相似文献   

15.
Due to unique reaction conditions of the acoustic cavitation process, ultrasound-assisted synthesis of nanoparticles has attracted increased research attention. In this study, we demonstrate the effect of ultrasonic irradiation on the crystallinity, stability, biocompatibility, and magnetic properties of chitosan-coated superparamagnetic iron oxide nanoparticles (CS-SPIONs). CS solution and colloidal suspension of SPIONs were mixed and sonicated using an ultrasonic probe of 1.3 cm tip size horn, frequency (20 kHz), and power (750 W). Different samples were sonicated for 1.5, 5, and 10 min with corresponding acoustic powers of 67, 40 and 36 W, and the samples were denoted S1.5, S5, and S10, respectively. The samples were characterized using X-ray diffractometer (XRD), Energy dispersive X-ray (EDX), Transmission electronic microscope (TEM), Fourier transform infrared spectroscopy (FTIR), Zeta sizer, and vibrating sample magnetometer (VSM). Cell cytotoxicity and cell uptake were investigated with human embryonic kidney 293 (HEK-293) cells through MTT assay and Prussian blue staining, respectively. The sharp peaks of the XRD pattern were disappearing with an increase in the sonication period but a decrease in acoustic power. EDX analysis also demonstrates that atomic and weight percentages of the various elements in the samples were decreasing with an increase in the sonication period. However, the Zeta potential (ζ) values increase with an increase in the sonication period.The saturation magnetization (Ms) of the S1.5 before and after the coating is 62.95 and 86.93 emu/g, respectively. Cell cytotoxicity and uptake of the S1.5 show that above 70% of cells were viable at the highest concentration and the longest incubation duration. Importantly, the CS-SPIONs synthesized by the sonochemical method are non-toxic and biocompatible.  相似文献   

16.
Grape juice samples were sonicated with processing variables of amplitude level (24.4–61.0 μm) and treatment time (0–10 min) at a constant frequency of 20 kHz and pulse durations of 5 s on and 5 s off. A full factorial experimental design with regression modeling was employed to investigate the main effects of amplitude level and treatment time on anthocyanins and color parameters. Significant effects of sonication on major anthocyanins cyanidin-3-O-glucosides (CA), malvanidin-3-O-glucosides (MA) and delphinidin-3-O-glucosides (DA), color values (L*, a*, b*) and color index (CI) were observed. Prediction models were found to be significant (p < 0.05) with low standard errors and high coefficients of determination (R2). Model predictions for critical quality parameters of anthocyanins (CA; MA; DA), color values (L*, a*, b*), TCD and CI inactivation were closely correlated to the experimental results obtained. Significant retention of anthocyanin content in grape juice was observed for CA (97.5 %); MA (48.2 %) and DA (80.9%) during sonication. CI and other color combinations (L*a*b*, L*a*/b* and L*b*/a*) were found to be strongly correlated with anthocyanin content. This study shows that sonication could be employed for as a preservation technique for fruit juice processing where anthocyanin retention is desired.  相似文献   

17.
Impacts of localized enzymolysis and sonication on physical, techno-functional, and structure attributes of sunflower meal protein (SMP) and its hydrolysate (SMPH) were studied. SMP was subjected to enzymolysis (using alcalase) to prepare SMPH with various degrees of hydrolysis (6–24% DH). Enzymolysis decreased colour lightness, turbidity, and particle size of unsonicated and sonicated SMP, while it increased the absolute values of zeta potential (P < 0.05). Sonication improved oil absorption capacity and dispersibility over unsonicated samples. Contrarily, sonicated preparations showed a decrease in water holding capacity. Intrinsic fluorescence and FTIR spectral analyses suggested that SMPH had more movable/flexible secondary structures than SMP. Moreover, the changes in sulfhydryl clusters and disulfide linkages following sonication demonstrated limited unfolding of SMP and SMPH structure and decrease in intermolecular interactions. SDS-PAGE profile exhibited significant reduction in molecular weight (MW) of sonicated SMP, whereas did not display differences between unsonicated and sonicated SMPH. From further MW analysis, SMPH was categorized with high proportion of small-sized peptides ≤ 3 kDa fractions, which increased from 78.64 to 93.01% (control) and from 82.3 to 93.88% (sonication) with enzymolysis (6–24DH). Localized enzymolysis and sonication can be utilised to modify the physical and conformational attributes of SMP and SMPH, which could enhance their functionalities and broaden the utilisation area in food industry.  相似文献   

18.
This work explored the effect of ultraviolet-assisted ultrasound (US-UV) as an emerging non-thermal sterilization technology on mango juice in aspects of microbial growth and quality changes. The juice in the ice bath was subjected to US-UV treatment at different US powers (0–600 W) and times (0–40 min), and no pathogen bacteria could be detected after treatment, while the physicochemical features (particle size, suspension stability, color, content of total polyphenols, carotenoids, sugar, reducing sugar and protein) and antioxidant ability of treated juice was preserved or improved to some extent. Based on these results, we further validated its positive effects on the nutritional value (content of ascorbic acid and soluble dietary fiber, antioxidant ability) and quality parameters (titratable acid, sugar acidity, total soluble solids, rheological behavior, metal elements) of mango juice treated at the optimal US parameter (10 min, 600 W); Not only the inactivation of polyphenol oxidation enzyme, peroxidase and pectin methylesterase was achieved but also the treated juice has a significant different volatile profile compared with the fresh juice, which might offer the better color, texture, and smell. Importantly, through the HPLC-MSD-Trap-XCT (phenols) and UPLC-Q Exactive Orbitrap-MS (carotenoids) study, the US-UV treatment will not cause difference on compounds composition, but it was responsible for changes in content of individual compounds, especially the all-trans-β-carotene, became the main component of carotenoids in processed mango juice (increased from 43.72% to 75.15%, relative content), and the oxygenated carotenoids (xanthophylls) are highly sensitive to the US (reduced from 50.96% to 4.85%) while the carotenes show a strong resistance to the US (increased 49.04% to 95.15%). Thus, the overall safety and quality of mango juice were enhanced while the sensory characteristics remained stable, suggesting that this non-thermal combination sterilization processing may successfully be implemented in the commercial processing of mango juice.  相似文献   

19.
Effect of high-frequency ultrasonication was examined on wastewater of a cheese manufacturing plant. Tests were carried out at two frequencies (500 kHz and 1 MHz) and two temperatures (22 and 40 °C). Samples were subjected to different energy densities; 7.5, 30.2, 60.5 and 121.0 J/mL at 500 kHz and 7.9, 31.7, 63.4 and 126.8 J/mL at 1 MHz to observe the creaming and recovery of lipid. These energy densities correspond to 30, 120, 240 and 480 s of sonication. Sonication was performed using a single plate transducer and reflector system at 40 W to create standing wave to coalesce and flocculate lipid globules. Recovery was higher at 40 °C after 480 s of sonication at both frequencies (77% at 500 kHz and 75% at 1 MHz). The lowest recovery of 47% was observed at 500 kHz and 22 °C at all applied energy densities. Changes in particle size and turbidity in the bottom aliquot indicated that high-frequency ultrasound caused coagulation and aggregation and settling of colloidal particles. Increase in particle size was observed to be highest at 1 MHz, 40 °C and 480 s of sonication. These results confirm that high-frequency ultrasound standing wave technology can be used to recover lipid from high-lipid dairy wastewater including that from cheese manufacturing.  相似文献   

20.
In this work, low-intensity ultrasonication (58.3 and 93.6 W/L) was performed at lag, logarithmic and stationary growth phases of Lactobacillus plantarum in apple juice fermentation, separately. Microbial responses to sonication, including microbial growth, profiles of organic acids profile, amino acids, phenolics, and antioxidant capacity, were examined. The results revealed that obvious responses were made by Lactobacillus plantarum to ultrasonication at lag and logarithmic phases, whereas sonication at stationary phase had a negligible impact. Sonication at lag and logarithmic phases promoted microbial growth and intensified biotransformation of malic acid to lactic acid. For example, after sonication at lag phase for 0.5 h, microbial count and lactic acid content in the ultrasound-treated samples at 58.3 W/L reached 7.91 ± 0.01 Log CFU/mL and 133.70 ± 7.39 mg/L, which were significantly higher than that in the non-sonicated samples. However, the ultrasonic effect on microbial growth and metabolism of organic acids attenuated with fermentation. Moreover, ultrasonication at lag and logarithmic phases had complex influences on the metabolism of apple phenolics such as chlorogenic acid, caffeic acid, procyanidin B2, catechin and gallic acid. Ultrasound could positively affect the hydrolysis of chlorogenic acid to caffeic acid, the transformation of procyanidin B2 and decarboxylation of gallic acid. The metabolism of organic acids and free amino acids in the sonicated samples was statistically correlated with phenolic metabolism, implying that ultrasound may benefit phenolic derivation by improving the microbial metabolism of organic acids and amino acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号