首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The picosecond interband two-photon laser excitation of PbWO4 crystals at a temperature of 10 K leads to electronic excitation energy accumulation, which results in almost 100% induced absorption in the 450–750 nm spectral range. The relaxation time of this induced absorption exceeds 100 min. The electronic excitation energy accumulated in the PbWO4 crystal at T = 10 K excites the intrinsic luminescence with a decay time longer than 45 min. The decay kinetics and the spectra of the intrinsic luminescence of the PbWO4 crystal at a temperature of 10 K were measured under two-photon and single-photon excitation. The luminescence under two-photon and single-photon excitation revealed a difference in the structure of the spectra.  相似文献   

2.
We have analyzed regular features of sensitization processes of crystals AgCl, AgCl0.95I0.05, and Zn0.6Cd0.4S to processes of a low-threshold (10?3–10?4 W/cm2) two-quantum excitation of anti-Stokes luminescence by adsorbed molecules and by J and H aggregates of dyes of different classes. The excitation centers of this luminescence are complex and consist of dye molecules and few-atom silver clusters adsorbed nearby. Luminescence-excitation processes involve stages of photoexcitation of adsorbed dye molecules; resonance transfer of electronic excitation energy to adsorbed atoms and few-atom silver clusters, levels of which lie near the middle of the band gap; and their subsequent photoionization.  相似文献   

3.
The thermally stimulated recombination processes and luminescence in crystals of the lithium borate family Li6(Y,Gd,Eu)(BO3)3 have been investigated. The steady-state luminescence spectra under X-ray excitation (X-ray luminescence spectra), the temperature dependences of the X-ray luminescence intensity, and the glow curves for the Li6Gd(BO3)3, Li6Eu(BO3)3, Li6Y0.5Gd0.5(BO3)3: Eu, and Li6Gd(BO3)3: Eu compounds have been measured in the temperature range 90–500 K. In the X-ray luminescence spectra, the band at 312 nm corresponding to the 6 P J 8 S 7/2 transitions in the Gd3+ ion and the group of lines at 580–700 nm due to the 5 D 07 F J transitions (J = 0–4) in the Eu3+ ion are dominant. For undoped crystals, the X-ray luminescence intensity of these bands increases by a factor of 15 with a change in the temperature from 100 to 400 K. The possible mechanisms providing the observed temperature dependence of the intensity and their relation to the specific features of energy transfer of electronic excitations in these crystals have been discussed. It has been revealed that the glow curves for all the crystals under investigation exhibit the main complex peak with the maximum at a temperature of 110–160 K and a number of weaker peaks with the composition and structure dependent on the crystal type. The nature of shallow trapping centers responsible for the thermally stimulated luminescence in the range below room temperature and their relation to defects in the lithium cation sublattice have been analyzed.  相似文献   

4.
The luminescence and thermally stimulated recombination processes in lithium borate crystals Li6Gd(BO3)3 and Li6Gd(BO3)3:Ce have been studied. The steady-state luminescence spectra under X-ray excitation (X-ray luminescence), temperature dependences of the intensity of steady-state X-ray luminescence (XL), and thermally stimulated luminescence (TSL) spectra of these compounds have been investigated in the temperature range of 90–500 K. The intrinsic-luminescence 312-nm band, which is due to the 6 P J 8 S 7/2 transitions in Gd3+ matrix ions, dominates in the X-ray luminescence spectra of these crystals; in addition, there is a wide complex band at 400–420 nm, which is due to the d → f transitions in Ce3+ impurity ions. It is found that the steady-state XL intensity in these bands increases several times upon heating from 100 to 400 K. The possible mechanisms of the observed temperature dependence of the steady-state XL intensity and their correlation with the features of electronic-excitation energy transfer in these crystals are discussed. The main complex TSL peak at 110–160 K and a number of minor peaks, whose composition and structure depend on the crystal type, have been found in all crystals studied. The nature of the shallow traps that are responsible for TSL at temperatures below room temperature and their relation with defects in the lithium cation sublattice are discussed.  相似文献   

5.
The spectra and kinetics of photoluminescence from multilayered structures of quasi-ordered silicon nanocrystals in a silica matrix were studied for undoped samples and samples doped with erbium. It was shown that the optical excitation energy of silicon nanocrystals could be effectively transferred to Er3+ ions, which was followed by luminescence at a wavelength of 1.5 µm. The effectiveness of energy transfer increased as the size of silicon nanocrystals decreased and the energy of exciting light quanta increased. The excitation of erbium luminescence in the structures was explained based on dipole-dipole interaction (the Förster mechanism) between excitons in silicon nanocrystals and Er3+ ions in silica surrounding them.  相似文献   

6.
郑伟  范希武 《发光学报》1997,18(2):105-109
本文报导了ZnCdTe-ZnTe多量子阱的受激发射机理.阈值时(Jth)受激发射峰相对于激子吸收峰的能量差(19meV)与激子束缚能接近.激发光强度在3Jth~4.8Jth之间变化时,该能量差随激发光强度的变化规律与激子-激子散射过程的理论结果符合得很好,从而把该材料在上述激发光强内的受激发射机理归结为激子-激子散射过程.  相似文献   

7.
Following pulsed laser excitation of As-doped Ge with impurity concentrations between 1015-1017cm-3, we observe the electron-hole drop (EHD) and excitonic luminescence decay. The spectrum resolved no-phonon (NP) EHD luminescence kinetics are found to depend on its spectral position. “Plateaus” on the kinetic curves for the high energy side of NP-spectrum are observed at high excitation. The data suggest this luminescence is due to the states which are in dynamical equilibrium during some time after excitation pulse.  相似文献   

8.
A luminescence method is proposed, which makes it possible to control interactions between molecular and polymolecular forms of a dye in AgHal emulsions, responsible for the self-desensitization of the first and second kinds. This allows one to determine an optimal concentration of a dye upon its application. An anomalously delayed anti-Stokes fluorescence of a molecular dye, which is responsible for self-desensitization of the second kind, is observed for the first time upon excitation of J aggregates of the dye. A mechanism for the self-desensitization of the first kind is proposed, which is connected with interactions between the J aggregate of a dye and dye molecules adsorbed on its surface.  相似文献   

9.
10.
The interaction of laser radiation with single J aggregates of cyanine dyes is theoretically analyzed and numerically simulated. The quantum-mechanical calculations of the equilibrium geometry and the energies and intensities of the lowest singlet electronic transitions in pseudoisocyanine chloride and its linear (chain) oligomers are fulfilled. The data of these calculations can serve as parameters of the analyzed model of interaction of J aggregates with radiation in the one-particle density matrix approximation. This model takes into account relaxation processes, the annihilation of excitations at neighboring molecules, and inhomogeneous broadening. Assuming that the inhomogeneous broadening is absent, calculations demonstrate the existence of spatial bistability, molecular switching waves, and dissipative solitons. The effect of the inhomogeneous broadening and the radiation intensity on the effective coherence length in linear (chain) J aggregates is analyzed.  相似文献   

11.
The low-temperature photostimulated activation of sensitized anti-Stokes luminescence in heterogeneous systems based on AgCl(I) microcrystals with adsorbed organic dye molecules and their aggregates is investigated. It is shown that the observed considerable (by more than an order of magnitude) enhancement of the intensity of this luminescence is caused by the formation of silver atoms and few-atom clusters on the surface of AgCl(I) microcrystals, which increase the efficiency of a two-quantum excitation of sensitized anti-Stokes luminescence by optical radiation in the range 630–730 nm with the flux density 1013–1015 quantum cm?2s?1. Analysis of all the experimental results indicates that the excitation mechanism of anti-Stokes luminescence is based on successive electron transfer or electron-excitation energy transfer from a dye molecule to an atomic-molecular dispersive silver center.  相似文献   

12.
We have studied direct creation processes of confined biexcitons in CuCl quantum dots by polarization-dependent resonant two-photon excitation spectroscopy. The two-photon absorption band for the lowest state of the biexciton (total angular momentum J=0) which appears on the lower energy side of confined exciton band was identified from the analysis of the polarization dependence of the photoluminescence excitation spectrum of the biexciton. Furthermore, the two-photon excitation process for the excited state of the biexciton (J=2) was also found with polarization dependence different from the J=0 biexciton state.  相似文献   

13.
This paper reports on a study of the luminescence emitted by Li6Gd(BO3)3: Ce3+ crystals under selective photoexcitation to lower excited states of the host ion Gd3+ and impurity ion Ce3+ within the 100–500-K temperature interval, where the mechanisms of migration and relaxation of electronic excitation energy have been shown to undergo noticeable changes. The monotonic 10–15-fold increase in intensity of the luminescence band at 3.97 eV has been explained within a model describing two competing processes, namely, migration of electronic excitation energy over chains of Gd3+ ions and vibrational energy relaxation between the 6 I j and 6 P j levels. It has been shown that radiative transitions in Ce3+ ions from the lower excited state 5d 1 to 2 F 5/2 and 2 F 7/2 levels of the ground state produce two photoluminescence bands, at 2.08 and 2.38 eV (Ce1 center) and 2.88 and 3.13 eV (Ce2 center). Possible models of the Ce1 and Ce2 luminescence centers have been discussed.  相似文献   

14.
Upconversion luminescence kinetics of Tm3+ doped Y0.8Yb0.2F3 solid solution crystal was studied for various values of pulse excitation parameters: pulse duration, wavelength and excitation power. Analysis of obtained results allowed a conclusion about the presence of transient processes. The transient processes found in upconversion luminescence kinetics are characterized by duration commensurate with lifetime of the excited energy levels of the activator ions. Upon completion of these processes a stable equilibrium state is established between the processes of population and spontaneous decay of the excited energy levels of Tm3+ ions. Conditions under which the equilibrium state can be maintained have been considered.  相似文献   

15.
The sensitized anti-Stokes luminescence excited by radiation with wavelengths from 610 to 750 nm and flux densities of 1014–1015 quanta/(cm2·s) is detected for microcrystals of Zn 0.6 Cd 0.4 S solid solutions with adsorbed organic malachite green and methylene blue dye molecules. The position of its excitation spectra coincides with that of the absorption spectra of adsorbed dye molecules, which suggests the cooperative mechanism of its occurrence. The possibility of amplification of the anti-Stokes luminescence by means of adsorption of silver atoms and few-atomic silver clusters, in addition to the dye molecules, on the Zn 0.6 Cd 0.4 S surface is investigated. It is assumed that in the latter case, the anti-Stokes luminescence is excited as a result of two-quantum optical transitions with electron or electron excitation energy transfer from the dye molecules adsorbed on the Zn 0.6 Cd 0.4 S surface to silver atoms and few-atomic silver clusters creating deep local states with photoionization energies of 1.8–2.0 eV in the gap. __________ Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 3, pp. 21–26, March, 2008.  相似文献   

16.
This paper reports on a study of the dynamics of electronic excitations in KBe2BO3F2 (KBBF) crystals by low-temperature luminescent vacuum ultraviolet spectroscopy with nanosecond time resolution under photoexcitation by synchrotron radiation. The first data have been obtained on the kinetics of photoluminescence (PL) decay, time-resolved PL spectra, time-resolved PL excitation spectra, and reflection spectra at 7 K; the estimation has been performed for the band gap E g = 10.6−11.0 eV; the predominantly excitonic mechanism for PL excitation at 3.88 eV has been identified; and defect luminescence bands at 3.03 and 4.30 eV have been revealed. The channels of generation and decay of electronic excitations in KBBF crystals have been discussed.  相似文献   

17.
The excitation of odd levels of the thulium atom, spontaneous transitions from which terminate at the 4f 13(2 F o)6s6p(3 P o) (7/2, J 2) levels with J 2 = 0, 1, is studied by the method of extended crossing beams. Fifty four excitation cross sections are measured at an excitation electron energy of 50 eV. Seven optical excitation functions are recorded in the electron energy range of 0–200 eV.  相似文献   

18.
李鸣  戴长建  谢军 《中国物理 B》2011,20(6):63204-063204
Two-colour stepwise excitation and photoionization schemes are adopted to study the spectra of high-lying states of the Sm atom. These bound even-parity states are excited with three different excitation paths from the 4f66s6p7DJ (J = 1, 2, 3) intermediate states, respectively. They are probed by photoionization process with an extra photon driving them to the continuum states. In this experiment, 270 states are detected in an energy range from 36160 cm-1 to 42250 cm-1, 109 of which are newly discovered, while the rest of them are confirmed to be the energy levels reported previously. Furthermore, based on the J-momentum selection rules of three excitation paths, a unique assignment of J-momentum for all observed states is determined, eliminating all remaining ambiguities in the literature. Finally, 53 single-colour transitions originating from the scanning laser are also identified. For all the relevant transitions, the information about their relative intensities is also given in the paper.  相似文献   

19.
This paper reports on luminescence studies of lithium borate Li6Gd(BO3)3 doped with Eu3+ and Ce3+ and Li6Eu(BO3)3 crystals upon selective excitation by synchronous radiation in the pump energy region 3.7–27 eV at temperatures of 10 and 290 K. The effective energy transfer between the rare-earth ions Gd3+ → Ce3+ and Gd3+ → Eu3+ is found to operate by the resonant mechanism, as well as through electron-hole recombination. A study is made of the fast decay kinetics of the Ce3+-center activator luminescence under intracenter photoexcitation and excitation in the interband transition region. The mechanisms underlying luminescence excitation and radiative relaxation of electron states of rare-earth ions are analyzed and energy transfer processes active in these crystals are discussed.  相似文献   

20.
Concentration series of disordered scheelitelike Yb:NaGd(MoO4)2 and Yb:NaLa(MoO4)2 single crystals are grown by the Czochralski method. The actual concentrations of Yb3+ ions in the crystals are determined by optical-absorption spectroscopy. The luminescence of Yb3+ ions in these crystals in the region of 1 μm is studied under UV and IR excitation. In the case of UV excitation, this luminescence appears as a result of nonradiative excited state energy transfer from donor centers of unknown nature to ytterbium. The character of the concentration dependence of Yb3+ luminescence indicates that the energy transfer at high Yb concentrations occurs with active participation of a cooperative mechanism, according to which the excitation energy of one donor center is transferred simultaneously to two Yb3+ ions. In other words, the quantum yield of this transfer exceeds unity, which can be used to increase the efficiency of crystalline silicon (c-Si) solar cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号