首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
We obtain an analytical solution of the problem on the motion of a body with wedge-shaped nose in an elastic medium for the case in which a medium separation zone may occur near the nose owing to asymmetry. The character of the dependence of the separation region length on the body velocity, the nose opening angle, the motion asymmetry degree, and the friction coefficient is found. It is shown that if the body moves at a velocity greater than the transverse wave velocity, then there is a limit velocity at which the separation region near the nose of the body disappears.  相似文献   

2.
In this paper the procedure for the dynamic analysis of body separation is introduced. Based on the general laws of classical dynamics, the method for obtaining the velocity and the angular velocity of the remainder body during separation is developed. Due to the discontinual mass variation, the jump-like change of the velocity and the angular velocity of the body is evident. Various types of motion of the separated body are considered. Depending on the type of motion of the separated body the dynamic properties of the remainder body are obtained. As a special case the in-plane motion of the body before and after separation is considered. The theoretical considerations are applied for the separation analysis of a rotor (a shaft-disc system). The transient motion of the body after separation is investigated. To prove the correctness of the procedure suggested in the paper, the case when the mass and the moment of inertia of the separated body are infinitesimal is analyzed. The obtained differential equations are the same as those previously obtained.  相似文献   

3.
JBO-9021炸药的化学反应区宽度   总被引:1,自引:0,他引:1  
采用激光干涉测试技术和楔形炸药构型, 对新型钝感高能炸药JBO-9021的爆轰反应区宽度进行了实验研究。实验中在楔形JBO-9021炸药后加镀膜LiF晶体作为测试窗口, 测试受试炸药与测试窗口界面的粒子速度剖面。将粒子速度剖面对时间进行二阶求导, 通过粒子速度剖面的二阶求导曲线上等于零的时刻判读CJ点的时刻, 从而得到化学反应区宽度。研究结果表明, 新型钝感高能炸药JBO-9021的化学反应持续时间为(238±13) ns, 相应的化学反应区宽度为(1.52±0.09) mm。  相似文献   

4.
Experiment shows that the stationary flow pattern about a bluff body with closed separation zone, in the case of laminar flow about the body and in the separation zone, breaks down for a subsonic stream velocity in the Reynolds number range from 101 to 102. However, experiment shows that for a supersonic stream velocity a stable stationary flow pattern is observed with the existence of laminar stagnant zones adjacent to the body (the stagnant zone behind an aft-facing step on the body surface, the stagnant zone ahead of a gradual forward-facing step on the body surface, the forward separation zone formed by the tip of a spike, the stagnant zone formed when a shock impinges on a body surface) at high Reynolds numbers of the order of 104–106.Thus, experiments indicate that in certain ranges of variation of M and R, under certain boundary condition, stationary solutions of the viscous fluid equations of motion exist and are stable. Outside these ranges and under other boundary conditions the flow about a body with a closed separation zone has a more (Karman vortex street for M1) or less (pulsating flow in the near wake behind the body for M>1) marked unsteady nature, indicating instability of the stationary solutions of the equations of motion under these conditions. To date no theoretical justification has been presented for the existence of stable stationary flows with separation zones in the ranges indicated.In the following an attempt is made to find the region of existence of possible stationary flows with a closed separation zone in that range of Reynolds numbers in which the flow in the viscous mixing region may be described by the Prandtl equations. In so doing the boundary conditions for the flow within the separation zone are selected so that the flow pattern within the zone is significantly simplified and use of the analysis methods applicable in hydrodynamics becomes possible. In the first part (§§1–4) we study the field of possible stationary flows for the case of an incompressible fluid. It is shown that only under special boundary conditions within the separation zone (ideal dissipator) does the flow about a flat plat as R approach the Kirchhoff flow with fluid at rest within the zone. In this case the drag coefficient of the system consisting of the plate plus the ideal dissipator cx/(+ +4), i.e., it approaches a value which is half that obtained by Kirchhoff for an ideal fluid.A qualitative study of the field of possible stationary flows in the cxR plane made it possible to discover the existence of a region, having an upper bound at R102, which degenerates into a line. In this region the stationary flows have a singular flow configuration with inviscid vortical-type attachment.The existence of a connection between the flow configuration in the inviscid vortical attachment region and the stability of the stationary solutions is investigated in the second part (§§6–7), both for the case of individual solutions obtained by the method of linear hydrodynamic stability theory and on the basis of the available experimental data obtained over a wide range of Reynolds numbers for both subsonic and supersonic flow velocities. This investigation makes it possible to formulate a rule for finding stable stationary flows with separation zones and to apply this rule to analyze separation-type flows, both laminar and in certain special cases turbulent.  相似文献   

5.
RID="ID=" Communicated by P. HallAbstract:The absolute/convective instability of two-dimensional wakes forming behind a flat plate and near the trailing-edge of a thin wedge-shaped aerofoil in an incompressible/compressible fluid is investigated. The mean velocity profiles are obtained by solving numerically the classical compressible boundary-layer equations with a negative pressure gradient for the flat plate case, and the incompressible triple-deck equations for a thin wedge-shaped trailing-edge. In addition for a Joukowski aerofoil the incompressible mean boundary-layer flow in the vicinity of the trailing-edge is also calculated by solving the interactive boundary-layer equations. A linear stability analysis of the boundary-layer profiles shows that a pocket of absolute instability occurs downstream of the trailing-edge with the extent of the instability region increasing with more adverse pressure gradients. The region of absolute instability persists along the near-wake axis, while the majority of the wake is convectively unstable. For a thin wedge-shaped trailing-edge in an incompressible fluid, a similar stability analysis of the velocity profiles obtained via a composite expansion, also shows the occurrence of absolute instability behind the trailing-edge for a wedge angle greater than a critical value. For increasing values of the wedge angle and for thicker aerofoils, separation takes place near the trailing-edge and the extent of absolute instability increases. Calculations also show that for insulated plates compressibility has a stabilizing effect but cooling the wall destabilizes the flow unlike wall heating.} Received 11 May 1998 and accepted 25 February 1999  相似文献   

6.
The geometric parameters of a separation zone originating during interaction between a supersonic stream and a transverse gas jet are considered. An approximate similarity law, which is verified by experimental results, is formulated for the presence of a high-intensity jet. The case when the separation point reaches the leading edge of the body or is fixed at a point of a sharp break in the body contour is considered specially.  相似文献   

7.
An analytic solution to the problem of motion of a slender rigid body in a semi-infinite domain of a compressible fluid is obtained for the case when the body moves in parallel to the free surface at a constant velocity. This problem is similar to the problem of motion of a hydrofoil ship whose wing-like device allows it to lift its hull above the water surface and to decrease the friction and drag forces limiting the speed of usual ships. During its motion in water, a hydrofoil produces a lift force. The obtained analytic solution allows one to derive explicit expressions for the drag force and for the lift force in the limiting cases of relatively small and large depths. When depth is small, the drag force is greater than that in an infinite medium, since the wave drag is additionally evolved. When the velocity increases and approaches the sound velocity, the forces exerted on the body increase without limit, which is typical for a linear formulation of the problem.  相似文献   

8.
Roy  S.  Takhar  H.S.  Nath  G. 《Meccanica》2004,39(3):271-283
Unsteady flow over an infinite permeable rotating cone in a rotating fluid in the presence of an applied magnetic field has been investigated. The unsteadiness is induced by the time-dependent angular velocity of the body, as well as that of the fluid. The partial differential equations governing the flow have been solved numerically by using an implicit finite-difference scheme in combination with the quasi-linearization technique. For large values of the magnetic parameter, analytical solutions have also been obtained for the steady-state case. It is observed that the magnetic field, surface velocity, and suction and injection strongly affect the local skin friction coefficients in the tangential and azimuthal directions. The local skin friction coefficients increase when the angular velocity of the fluid or body increases with time, but these decrease with decreasing angular velocity. The skin friction coefficients in the tangential and azimuthal directions vanish when the angular velocities of fluid and the body are equal but this does not imply separation. When the angular velocity of the fluid is greater than that of the body, the velocity profiles reach their asymptotic values at the edge of the boundary layer in an oscillatory manner, but the magnetic field or suction reduces or suppresses these oscillations.  相似文献   

9.
A previously constructed model that describes the spatial motion of a body of revolution in an elastoplastic medium (without flow separation and with nonsymmetric separation of the medium flow taken into account) is used to study the Lyapunov stability of rectilinear motion of a body in the case of frozen axial velocity on a half-infinite time interval. Some stability criteria are obtained and the influence of tangential stresses is analyzed.  相似文献   

10.
The problem of treating a surface with a wedge-shaped stamp is considered using the model of an ideal rigid plastic body. The strain fields in the vicinity of singularities of the displacement velocity field (on the discontinuity lines of the displacement velocities and at the center of the fan of characteristics) are investigated taking into account irreversible compressibility.  相似文献   

11.
A model describing the spatial motion (without separation and with nonsymmetric separation of the flow in the medium) of a body rotating about its symmetry axis in a resisting medium is constructed. Several criteria for stability of the body rectilinear motion are obtained in the case of frozen axial velocity. The influence of retardation on the stability of rectilinear motion of a cone is considered.  相似文献   

12.
陕耀  苏瓅  周顺华 《力学学报》2020,52(1):111-123
物理学中,摄动源在非均匀介质中或非均匀介质附近匀速直线运动所产生的能量辐射现象称为渡越辐射.列车沿轨道运行,由轮轨接触产生的弹性波在非均匀轨道和基础中传播将发生渡越辐射,而轨道和基础的非均匀性集中体现在不同轨道基础之间的过渡段(如路桥过渡段、桥隧过渡段或有砟-无砟轨道过渡段).为研究车致弹性波在过渡段中引发的渡越辐射现象,本文以典型高速铁路路桥过渡段结构形式为依据,建立了二维平面应力渡越辐射能计算模型.其中,两个材料参数不同的半无限弹性层由一倾斜界面耦合,底端固定,上表面自由,一个集中载荷在自由表面上匀速运动.界面两侧弹性体中的波动方程均分解为本征场、自由场两个部分分别求解,其中自由场波动方程采用分离变量法数值求解.通过模型求解得到了不同载荷移动速度和界面倾斜角度条件下的渡越辐射能及界面附近应变能密度.结果表明,渡越辐射能的大小随载荷移动速度增大单调非线性增大,移动载荷速度达到刚度较大一侧介质表面波速的74%时产生的渡越辐射能就将超过载荷本身激发的本征场应变能;界面倾斜角度越大,即两侧介质刚度过渡距离越短,渡越辐射能与本征场应变能比值越大.   相似文献   

13.
The strain and fracture of plates under the action of a load normal to their planes was studied in numerous papers. A review of publications in this field in the case of impact by a freely flying body is given in [1–3]. At first, researchers’ attention was mainly paid to the so-called ideal version of collision in which the normal impact of a rigid body on the plate center was considered and the boundary conditions did not affect the results of impact. The plate strains were studied near and in the region of impact, the minimal velocities were determined for a body of some specific shape for which the plate is punched through (the so-called ballistic limit); the shapes of fractured punched plates and the residual velocity of the body if its initial velocity exceeds the ballistic limit were also determined. In the last years, the more complicated cases of collision have been studied, namely, the case in which the impact is not directed along the normal to the plate plane and the impact velocity vector does not coincide with the body symmetry axis as well as the case of impacts on shells. The research in this field was represented in [2, 3]. But in this case the influence of the boundary conditions is still considered insufficiently. This gap was indicated in [2].In the present paper, we study the normal impacts of spherical bodies and deformable cylindrical bodies with spherical heads on circular plates for various boundary conditions and mechanical characteristics of their material. We consider the plate strains, determine the impact velocity at which the plate is punched through, and clarify the mechanism and the sequence of the plate fracture and break-though depending on their mechanical characteristics and boundary conditions. We make an attempt to perform numerical studies of the dynamic deflection at the center of a plate fixed on the boundary using its experimentally determined quasistatic rigidity and taking into account the boundary conditions for determining the associated mass. We estimate the influence of the body mass on the ballistic limit. The use of rigid spherical bodies permits treating any variations in the results of impacts as a characteristic reaction of the plates themselves, because in this case it is unnecessary to deal with the body orientation with respect to the velocity vector. For impacts with such bodies, we used plates made of aluminum alloys and of lead. We studied how the strength of cylindrical bodies with spherical heads made of plasticine or lead affects the strain of plates made of AMTsM alloy.  相似文献   

14.
We present results of a large number of 2D numerical simulations in which we investigated various aspects in the deep penetration of rigid short projectiles into semi-infinite targets, as well as their perforation through thin metallic plates. In particular, we analyze the effect of the entrance phase on the penetration characteristics of short ogive and spherical nosed projectiles. The second issue which we investigate here concerns the perforation of metallic plates by sharp nosed projectiles. Our simulation results show that a simple model, which is based on energy conservation, accounts for the residual velocities when the target is penetrated by the ductile hole enlargement process. In addition, we define a new concept, the effective resisting stress which the plate exerts on the projectile during perforation. We show that it has some valuable insights for the process of perforation and we perform a parametric study to understand its dependence on various parameters. This effective stress, which determines the ballistic limit velocity of the projectile, depends on the strength of the plate, as well as on its thickness, as we show here.  相似文献   

15.
A model of the nonlinear interaction between a pressure perturbation traveling at a constant velocity and an incompressible boundary layer is constructed when its near-wall part is described by the “inviscid boundary layer” equations. A steady-state solution is managed to obtain in the finite form under the assumption that it exists in a moving coordinate system. It is shown that the boundary layer can easily overcome pressure perturbations whose amplitude is not higher than the dynamic pressure calculated from the velocity of the pressure perturbation. At the higher pressure perturbation amplitudes a vortex sheet sheds from the body surface to the boundary layer. The vortex sheet represents an unstable surface of the tangential discontinuity which separates the regions of the direct and reverse separation flows. In the case of an arbitrary shape of the pressure perturbation the surface of the tangential discontinuity sheds from the body surface at a finite angle with the formation of a stagnation point. An example of the pressure perturbation in which the vortex sheet sheds from the body surface along the tangent is constructed.  相似文献   

16.
The wave drag of a chisel-tike slender ruled body in a supersonic stream is considered. The dependence of the drag on the body geometry is studied. A comparison with axisymmetric bodies and the von Karman ogive is drawn.  相似文献   

17.
Fischer–Tropsch (F–T) synthesis is an important route to achieve the clean fuel production. The performance of gas–liquid separation equipment involving in the progressive condensation and separation of light and heavy hydrocarbons in the oil-gas products has become a bottleneck restricting the smooth operation of the F–T process. In order to remove the bottleneck, a gas–liquid vortex separator with simple structure, low pressure drop and big separation capacity was designed to achieve the efficient separation between gas and droplets for a long period. The RSM (Reynolds Stress Model) and DPM (Discrete Phase Method) are employed to simulate the flow characteristics and liquid distribution in the separator. The results show that the separation efficiency is influenced by the flow field and liquid phase concentration in the annular zone. The transverse vortex at the top of spiral arm entrains the droplets with small diameter into the upper annular zone. The entrained droplets rotate upward at an angle of about 37.4°. The screw pitch between neighbor liquid threads is about 0.3 m. There is a top liquid ring in the top of annular zone, where the higher is the liquid phase concentration, the lower is the separation efficiency. It is found that by changing the operating condition and the annular zone height the vortex can be strengthened but not enlarged by the inlet velocity. The screw pitch is not affected by both inlet velocity and annular zone height. The liquid phase concentration in the top liquid ring decreases with both the increases of inlet velocity and annular zone height. The total pressure drop is almost not affected by the annular zone height but is obviously affected by the inlet velocity. When the height of annular zone is more than 940 mm, the separation efficiency is not changed. Therefore, the annular zone height of 940 mm is thought to be the most economical design.  相似文献   

18.
The present study deals with the experimental and numerical investigations of aluminum target plates impacted by blunt, ogive and hemispherical nosed steel projectiles. The projectiles were normally impacted on the target plates of 0.5, 0.71, 1, 1.5, 2, 2.5 and 3 mm thicknesses at different velocities with the help of a pneumatic gun. Effect of projectile nose shape, impact velocity and plate thickness on the deformation of the target plates was studied. Hemispherical nosed projectile caused highest global deformation (dishing) of the target plates. Ogive nosed projectiles were found to be the most efficient penetrator for the case of plates of thicknesses 0.5, 0.71, 1.0 and 1.5 mm. For the case of plates of thicknesses 2.0, 2.5 and 3.0 mm however, blunt nosed projectiles required least energy to perforate the target plates. The ballistic limit velocity of hemispherical nosed projectiles was found to be highest as compared to the other two projectiles. Finite element analysis of the problem was carried out using ABAQUS finite element code. Results of the numerical analysis were compared with the experiments and good correlation between the two was found.  相似文献   

19.
In many practical applications of conical diffusers, the flow is fed by an annular flow passage formed by a center body. Flow separation, which occurs if the center body ends abruptly, is undesirable because it degrades the diffuser performance. The present experiment utilizes magnetic resonance velocimetry to acquire three-component mean velocity measurements for a set of conical diffusers with an annular inlet. The results show strong coupling between the diffuser wall boundary layer development and the wake of the center body. Coanda blowing is used to mitigate the center body wake separation. The diffuser wall boundary layer is thick in the absence of the central separation bubble and separates when Coanda blowing is too strong.  相似文献   

20.
The shadow and interferometric methods and the laser probe method are used to investigate crossflow past a cylinder on the free-stream Mach number interval M a =0.5–1.2 for subcritical Reynolds numbers Re d and various initial steam states. Detailed pressure distributions are obtained and the pressure fluctuations on the cylinder surface are measured. The dependence of the Strouhal number on the velocity and thermodynamic parameters of the flow are determined. In single-phase steam flow past a cylinder the greatest fluctuations occur in the separation zone in regimes corresponding to transonic drag crisis. It is shown that spontaneous condensation in the turbulent wake and local supersonic zones may cause an increase in the periodic pressure fluctuations in the separation zone, the maximum increase in the fluctuations being noted when the critical pressure ratio is reached at the rear of the cylinder. The initial wetness of the steam has the greatest effect on the periodic separation characteristics at subsonic flow velocities, and in the case of supersonic flow leads to a substantial increase in the level of the low-frequency pressure fluctuations at the front of the cylinder.(deceased)Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 6, pp. 118–138, November–December, 1994.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号