首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background  

Production of a variety of finger-key touches in the piano is essential for expressive musical performance. However, it remains unknown how expert pianists control multi-joint finger and arm movements for manipulating the touch. The present study investigated differences in kinematics and kinetics of the upper-limb movements while expert pianists were depressing a key with two different touches: pressed and struck. The former starts key-depression with the finger-tip contacting the key, whereas the latter involves preparatory arm-lift before striking the key. To determine the effect of individual muscular torque (MUS) as well as non-muscular torques on joint acceleration, we performed a series of inverse and forward dynamics computations.  相似文献   

2.

Background  

Due to auditory experience, musicians have better auditory expertise than non-musicians. An increased neocortical activity during auditory oddball stimulation was observed in different studies for musicians and for non-musicians after discrimination training. This suggests a modification of synaptic strength among simultaneously active neurons due to the training. We used amplitude-modulated tones (AM) presented in an oddball sequence and manipulated their carrier or modulation frequencies. We investigated non-musicians in order to see if behavioral discrimination training could modify the neocortical activity generated by change detection of AM tone attributes (carrier or modulation frequency). Cortical evoked responses like N1 and mismatch negativity (MMN) triggered by sound changes were recorded by a whole head magnetoencephalographic system (MEG). We investigated (i) how the auditory cortex reacts to pitch difference (in carrier frequency) and changes in temporal features (modulation frequency) of AM tones and (ii) how discrimination training modulates the neuronal activity reflecting the transient auditory responses generated in the auditory cortex.  相似文献   

3.

Background  

Recent findings of a tight coupling between visual and auditory association cortices during multisensory perception in monkeys and humans raise the question whether consistent paired presentation of simple visual and auditory stimuli prompts conditioned responses in unimodal auditory regions or multimodal association cortex once visual stimuli are presented in isolation in a post-conditioning run. To address this issue fifteen healthy participants partook in a "silent" sparse temporal event-related fMRI study. In the first (visual control) habituation phase they were presented with briefly red flashing visual stimuli. In the second (auditory control) habituation phase they heard brief telephone ringing. In the third (conditioning) phase we coincidently presented the visual stimulus (CS) paired with the auditory stimulus (UCS). In the fourth phase participants either viewed flashes paired with the auditory stimulus (maintenance, CS-) or viewed the visual stimulus in isolation (extinction, CS+) according to a 5:10 partial reinforcement schedule. The participants had no other task than attending to the stimuli and indicating the end of each trial by pressing a button.  相似文献   

4.

Background  

In normal-hearing subjects, monaural stimulation produces a normal pattern of asynchrony and asymmetry over the auditory cortices in favour of the contralateral temporal lobe. While late onset unilateral deafness has been reported to change this pattern, the exact influence of the side of deafness on central auditory plasticity still remains unclear. The present study aimed at assessing whether left-sided and right-sided deafness had differential effects on the characteristics of neurophysiological responses over auditory areas. Eighteen unilaterally deaf and 16 normal hearing right-handed subjects participated. All unilaterally deaf subjects had post-lingual deafness. Long latency auditory evoked potentials (late-AEPs) were elicited by two types of stimuli, non-speech (1 kHz tone-burst) and speech-sounds (voiceless syllable/pa/) delivered to the intact ear at 50 dB SL. The latencies and amplitudes of the early exogenous components (N100 and P150) were measured using temporal scalp electrodes.  相似文献   

5.

Background  

Sign-language comprehension activates the auditory cortex in deaf subjects. It is not known whether this functional plasticity in the temporal cortex is age dependent. We conducted functional magnetic-resonance imaging in six deaf signers who lost their hearing before the age of 2 years, five deaf signers who were >5 years of age at the time of hearing loss and six signers with normal hearing. The task was sentence comprehension in Japanese sign language.  相似文献   

6.

Background  

The nucleus accumbens (NAc) plays a critical role in amphetamine-produced conditioned place preference (CPP). In previous studies, NAc basal and amphetamine-produced DA transmission was altered by Group II mGluR agents. We tested whether NAc amphetamine CPP depends on Group II mGluR transmission.  相似文献   

7.
As reported in the recent literature on piano performance, an emphasized voice (the melody) tends to be played not only louder than the other voices, but also about 30 ms earlier (melody lead). It remains unclear whether pianists deliberately apply melody lead to separate different voices, or whether it occurs because the melody is played louder (velocity artifact). The velocity artifact explanation implies that pianists initially strike the keys simultaneously; it is only different velocities that make the hammers arrive at different points in time. The measured note onsets in these studies, mostly derived from computer-monitored pianos, represent the hammer-string impact times. In the present study, the finger-key contact times are calculated and analyzed as well. If the velocity artifact hypothesis is correct, the melody lead phenomenon should disappear at the finger-key level. Chopin's Ballade op. 38 (45 measures) and Etude op. 10/3 (21 measures) were performed on a B?sendorfer computer-monitored grand piano by 22 skilled pianists. The hammer-string asynchronies among voices closely resemble the results reported in the literature. However, the melody lead decreases almost to zero at the finger-key level, which supports the velocity artifact hypothesis. In addition to this, expected onset asynchronies are predicted from differences in hammer velocity, if finger-key asynchronies are assumed to be zero. They correlate highly with the observed melody lead.  相似文献   

8.

Background  

Artificial language studies have revealed the remarkable ability of humans to extract syntactic structures from a continuous sound stream by mere exposure. However, it remains unclear whether the processes acquired in such tasks are comparable to those applied during normal language processing. The present study compares the ERPs to auditory processing of simple Italian sentences in native and non-native speakers after brief exposure to Italian sentences of a similar structure. The sentences contained a non-adjacent dependency between an auxiliary and the morphologically marked suffix of the verb. Participants were presented four alternating learning and testing phases. During learning phases only correct sentences were presented while during testing phases 50 percent of the sentences contained a grammatical violation.  相似文献   

9.

Background  

The objective was to examine functional connectivity linked to the auditory system in patients with bothersome tinnitus. Activity was low frequency (< 0.1 Hz), spontaneous blood oxygenation level-dependent (BOLD) responses at rest. The question was whether the experience of chronic bothersome tinnitus induced changes in synaptic efficacy between co-activated components. Functional connectivity for seed regions in auditory, visual, attention, and control networks was computed across all 2 mm3 brain volumes in 17 patients with moderate-severe bothersome tinnitus (Tinnitus Handicap Index: average 53.5 ± 3.6 (range 38-76)) and 17 age-matched controls.  相似文献   

10.

Background  

Mammalian and avian auditory hair cells display tonotopic mapping of frequency along the length of the cochlea and basilar papilla. It is not known whether the auditory hair cells of fishes possess a similar tonotopic organization in the saccule, which is thought to be the primary auditory receptor in teleosts. To investigate this question, we determined the location of hair cell damage in the saccules of goldfish (Carassius auratus) following exposure to specific frequencies. Subjects were divided into six groups of six fish each (five treatment groups plus control). The treatment groups were each exposed to one of five tones: 100, 400, 800, 2000, and 4000 Hz at 176 dB re 1 μPa root mean squared (RMS) for 48 hours. The saccules of each fish were dissected and labeled with phalloidin in order to visualize hair cell bundles. The hair cell bundles were counted at 19 specific locations in each saccule to determine the extent and location of hair cell damage. In addition to quantification of anatomical injury, hearing tests (using auditory evoked potentials) were performed on each fish immediately following sound exposure. Threshold shifts were calculated by subtracting control thresholds from post-sound exposure thresholds.  相似文献   

11.

Background  

Gonadal and stress-related steroid hormones are known to influence auditory function across vertebrates but the cellular and molecular mechanisms responsible for steroid-mediated auditory plasticity at the level of the inner ear remain unknown. The presence of steroid receptors in the ear suggests a direct pathway for hormones to act on the peripheral auditory system, but little is known about which receptors are expressed in the ear or whether their expression levels change with internal physiological state or external social cues. We used qRT-PCR to measure mRNA expression levels of multiple steroid receptor subtypes (estrogen receptors: ERα, ERβa, ERβb; androgen receptors: ARα, ARβ; corticosteroid receptors: GR2, GR1a/b, MR) and aromatase in the main hearing organ of the inner ear (saccule) in the highly social African cichlid fish Astatotilapia burtoni, and tested whether these receptor levels were correlated with circulating steroid concentrations.  相似文献   

12.

Aim  

The objective of this study is to evaluate the recovery of hearing function of auditory pathway after cochlear implantation by extracting the characterizations of electrically evoked auditory brainstem responses (EABR). The purpose of this study was to explore a reality and possible EABR test mode in clinical applications, rather than strict animal research.  相似文献   

13.

Background  

Under natural circumstances, attention plays an important role in extracting relevant auditory signals from simultaneously present, irrelevant noises. Excitatory and inhibitory neural activity, enhanced by attentional processes, seems to sharpen frequency tuning, contributing to improved auditory performance especially in noisy environments. In the present study, we investigated auditory magnetic fields in humans that were evoked by pure tones embedded in band-eliminated noises during two different stimulus sequencing conditions (constant vs. random) under auditory focused attention by means of magnetoencephalography (MEG).  相似文献   

14.

Background  

Auditory evoked responses can be modulated by both the sequencing and the signal-to-noise ratio of auditory stimuli. Constant sequencing as well as intense masking sounds basically lead to N1m response amplitude reduction. However, the interaction between these two factors has not been investigated so far. Here, we presented subjects tone stimuli of different frequencies, which were either concatenated in blocks of constant frequency or in blocks of randomly changing frequencies. The tones were presented either in silence or together with broad-band noises of varying levels.  相似文献   

15.

Background  

Performing music requires fast auditory and motor processing. Regarding professional musicians, recent brain imaging studies have demonstrated that auditory stimulation produces a co-activation of motor areas, whereas silent tapping of musical phrases evokes a co-activation in auditory regions. Whether this is obtained via a specific cerebral relay station is unclear. Furthermore, the time course of plasticity has not yet been addressed.  相似文献   

16.

Background  

The mammalian auditory cortex can be subdivided into various fields characterized by neurophysiological and neuroarchitectural properties and by connections with different nuclei of the thalamus. Besides the primary auditory cortex, echolocating bats have cortical fields for the processing of temporal and spectral features of the echolocation pulses. This paper reports on location, neuroarchitecture and basic functional organization of the auditory cortex of the microchiropteran bat Phyllostomus discolor (family: Phyllostomidae).  相似文献   

17.

Background  

In the field of auditory neuroscience, much research has focused on the neural processes underlying human sound localization. A recent magnetoencephalography (MEG) study investigated localization-related brain activity by measuring the N1m event-related response originating in the auditory cortex. It was found that the dynamic range of the right-hemispheric N1m response, defined as the mean difference in response magnitude between contralateral and ipsilateral stimulation, reflects cortical activity related to the discrimination of horizontal sound direction. Interestingly, the results also suggested that the presence of realistic spectral information within horizontally located spatial sounds resulted in a larger right-hemispheric N1m dynamic range. Spectral cues being predominant at high frequencies, the present study further investigated the issue by removing frequencies from the spatial stimuli with low-pass filtering. This resulted in a stepwise elimination of direction-specific spectral information. Interaural time and level differences were kept constant. The original, unfiltered stimuli were broadband noise signals presented from five frontal horizontal directions and binaurally recorded for eight human subjects with miniature microphones placed in each subject's ear canals. Stimuli were presented to the subjects during MEG registration and in a behavioral listening experiment.  相似文献   

18.

Background  

Previous magnetoencephalography (MEG) studies have demonstrated speaking-induced suppression (SIS) in the auditory cortex during vocalization tasks wherein the M100 response to a subject's own speaking is reduced compared to the response when they hear playback of their speech.  相似文献   

19.

Background  

Impaired speech perception is one of the major sequelae of aging. In addition to peripheral hearing loss, central deficits of auditory processing are supposed to contribute to the deterioration of speech perception in older individuals. To test the hypothesis that auditory temporal processing is compromised in aging, auditory evoked magnetic fields were recorded during stimulation with sequences of 4 rapidly recurring speech sounds in 28 healthy individuals aged 20 – 78 years.  相似文献   

20.

Background  

The inferior colliculus, which receives almost all ascending and descending auditory signals, plays a crucial role in the processing of auditory information. While the majority of the recorded activities in the inferior colliculus are attributed to GABAergic and glutamatergic signalling, other neurotransmitter systems are expressed in this brain area including opiate peptides and their receptors which may play a modulatory role in neuronal communication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号