首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The adsorption of methylsilane (MeSiH3) on Au(1 1 1) was investigated using density functional theory (DFT) within a generalized gradient approximation (GGA). Two preferred chemisorption sites are identified: the hollow site and an atop site with an ejected gold substrate atom. Both of these configurations result in a tetracoordinate Si with a distorted tetrahedral geometry. The energy of adsorption is calculated allowing an analysis of the preferred binding geometry as a function of coverage. The relation of the supermolecular length scale pattern that emerges from a spinodal decomposition of the two phases arising from the two binding geometries is discussed. The pattern observed in the STM images is shown to be consistent with the local density of states calculated for the two different binding geometries.  相似文献   

2.
Molybdenum was deposited in two steps (3 eq. ML and 1 eq. ML) on the light blue rutile TiO2(1 1 0) (1 × 1) surface at room temperature, each Mo deposition cycle being followed by an annealing up to 950-1000 K. This procedure was found to lead to formation of separated clusters having a size in very wide range (1-20 nm). Scanning tunneling microscopy showed a dependence of the cluster morphology as a function of the size. The scanning tunneling spectra of Mo clusters was studied as a function of cluster dimensions and discussed in comparison with photoelectron spectroscopy results previously obtained for homogeneous Mo films. The dI/dV curves do not display the valence band structure of deposited material, which could be explained by the Schottky barrier formation.  相似文献   

3.
We have studied Si(0 0 1)-Ga surface structures formed at Ga coverages of slightly above 0.50 monolayer (ML) at 250 °C by scanning tunneling microscopy (STM). 4 × 2-, 5 × 2-, and 6 × 2-Ga structures were observed in a local area on the surface. The 4 × 2-Ga structure consists of three protrusions, as observed in filled- and empty-state STM images. The characters of these structures are clearly different from those of other Si(0 0 1)-Ga structures. We also performed an ab initio calculation of the energetics for several possible models for the 4 × 2-Ga structure, and clarified that the three-orthogonal-Ga-dimer model is the most stable. Also, the results of comparing the simulated STM images and observation images at various bias voltages indicate that this structural model is the most favorable.  相似文献   

4.
Surface morphologies of nanocrystalline TiO2 thin films were studied by analyzing the surface profile of AFM images using wavelet transform method. Based on characterizing the fractal feature and computing the image details at different orientations and resolutions, the surface textures of nanocrystalline TiO2 thin films before and after chemical treatment were examined. The results reveal that titanium isopropoxide treatment leads to an increase of surface roughness. The related mechanism of modification of the microstructure by chemical treatment associated with the improvement of the photocurrent response is discussed.  相似文献   

5.
We have recently reported structure solutions for the (2 × 1) and c(4 × 2) reconstructions of SrTiO3(0 0 1) based on high-resolution electron microscopy, direct methods analysis of diffraction data and density functional theory. Both reconstructions were found to be TiO2-rich and feature a single overlayer of TiO2 stoichiometry on top of a bulk-like TiO2 layer. Qualitatively, the two reconstruction geometries differ in the cation sub-lattice of the overlayer only, where Ti atoms occupy half of the fivefold cation sites. In the present work we use density functional theory to generate a number of variations of this structural motif in search of patterns of stability. We find a reliable predictor for the reconstruction energy in the ability of oxygen atoms to relax vertically out of the overlayer plane to minimize non-bonded oxygen-oxygen repulsions. Out-of-plane relaxation of oxygen atoms in turn is modulated by the number and relative position of coordinating Ti atoms, which yields simple empirical rules as to how cations are distributed in low energy reconstructions.  相似文献   

6.
We use low-energy electron microscopy to image the reversible transformation of the TiO2(1 1 0) surface between a high-temperature 1 × 1 structure and a low-temperature 1 × 2 structure. The reconstruction dynamics are novel: 1 × 2 bands nucleated during cooling at the steps of the starting 1 × 1 surface and then grew laterally from the steps. The transformation kinetics are dominated by mass flow from the surface to the bulk, a process that facilitates converting the high-density 1 × 1 phase to the lower-density 1 × 2 phase. We have also imaged how the 1 × 1 surface reconstructs to 1 × 2 phase after sufficient oxygen is removed from the crystal’s bulk during vacuum annealing. 1 × 2 bands also nucleated and grew laterally from the initial 1 × 1-surface’s steps. However, because this isothermal 1 × 1-to-1 × 2 transition occurs largely by mass redistribution on the surface, the steps of the initial 1 × 1 surface and final 1 × 2 surface are offset. We propose models of mass redistribution during the 1 × 1/1 × 2 phase transition to explain this effect. We conclude that the phase transition is first-order because it always occurred by the nucleation and growth of discrete phases. Finally, we show that quenching can roughen TiO2’s surface by forming pits and that changing temperature causes step motion on 1 × 2 surfaces.  相似文献   

7.
Light emission induced by scanning tunneling microscope on gold islands grown on MoS2 surfaces has been investigated. Surface geometry and roughness show that different apexes of the same tip can modify the energy of photons emitted in the tunneling junction. Comparisons of topography and photon map are used to locate islands imaged twice and to represent approximately the tip shape used. Light emission spectroscopy on the same island with two apexes of the multiple tip reveals variations of emission properties according to the apex used, showing the importance of tip geometry in the emission process induced by tip induced plasmon modes.  相似文献   

8.
Palladium overlayers deposited on TiO2(110) by metal vapour deposition have been investigated using LEED, XPS and FT-RAIRS of adsorbed CO. Low coverages of palladium (<3 ML) deposited at 300 K adsorb CO exclusively in a bridged configuration with a band (B1 at 1990 cm−1) characteristic of CO adsorption on Pd(110) and Pd(100) surfaces. When annealed to 500 K, XPS and LEED indicate the nucleation of Pd particles on which CO adsorbs predominantly as a strongly bound linear species which we associate with edge sites on the Pd particles (L* band at 2085 cm−1). Both bridged and linear CO bands are exhibited as increases in reflectivity at the resonant frequency, indicating the retention of small particle size during the annealing process. Palladium overlayers of intermediate coverages (10–20 ML) deposited at 300 K undergo some nucleation during growth, and adsorbed CO exhibits both absorption and transmission bands in the B1 (1990 cm−1) and B2 (1940 cm−1) regions. The latter is associated with the formation of Pd(111) facets. Highly dispersed Pd particles are produced on annealing at 500 K. This is evidenced by the dominance of transmission bands for adsorbed CO and a significant concentration of edge sites, which accommodate the strongly bound linear species at 300 K. Adsorption of CO at low temperature also allows the identification of the constituent faces of Pd and the conversion of Pd(110)/(100) facets to Pd(111) facets during the annealing process. High coverages of palladium (100 ML) produce only absorption bands in FT-RAIRS of adsorbed CO associated with the Pd facets, but annealing these surfaces also shows a conversion to Pd(111) facets. LEED indicates that at coverages above 10 ML, the palladium particles exhibit (111) facets parallel to the substrate and aligned with the TiO2(110) unit cell, and that this ordering in the particles is enhanced by annealing.  相似文献   

9.
In order to understand the atomic structure of nanostructures self-assembled on the template with one-dimensional symmetry, Bi/Si(5 5 12) system has been chosen and Bi-adsorption steps have been studied by STM. With Bi adsorption, the clean Si(5 5 12) is transformed to (3 3 7) terraces with disordered boundary due to mismatched periodicities between (3 3 7) and (5 5 12), and Bi-dimer rows are formed inside the (3 3 7) unit as follows: Initially, when Bi atoms are deposited at the adsorption temperature of about 450 °C, they selectively replace Si-dimers and Si-adatoms and form adsorbed Bi-dimers and Bi-adatoms, respectively. If additional Bi is supplied, the Bi-dimers adsorb on the Bi-dimers and Bi-adatoms in the first layer. These adsorbed dimers in the second layer are facing each other to form a Bi-dimer pair with relatively stable p3bonding. Finally, a single Bi-dimer adsorbs above the Bi-dimer pair in the second layer, at which point the Bi layer thickness saturates. It has been concluded that the Bi-dimer pair with stable p3 bonding is the composing element in the second layer and such site-selective adsorption is possible due to the substrate-strain relaxation through inserting Bi-buffer layer limited to specific sites of the substrate.  相似文献   

10.
We present periodic DFT calculations to study the structure of the V2O5-TiO2 (anatase) catalyst. Linear and cyclic dimeric V2O5 species represent the active phase. The support TiO2 (anatase) is represented for the perfect (1 0 0) and (0 0 1) surfaces. The maximum interaction between the active phase and the support is favored, and low coverage is assumed. The most stable models allow the compensation of the surface dangling bonds, and can be understood as a continuation of the bulk anatase structure. The more suitable models for studying reactivity possess uncoordinated atoms available for reactivity, such as terminal oxygen atoms in V2O5. Relaxation plays an important role in the adsorption systems, and cannot be discarded when modeling the V2O5-anatase catalyst.  相似文献   

11.
First-principles calculations based on density functional theory and the pseudopotential method have been used to investigate the energetics of H2O adsorption on the (110) surface of TiO2 and SnO2. Full relaxation of all atomic positions is performed on slab systems with periodic boundary conditions, and cases of full and half coverage are studied. Both molecular and dissociative (H2O→OH+H) adsorption are treated, and allowance is made for relaxation of the adsorbed species to unsymmetrica configurations. It is found that for both TiO2 and SnO2 an unsymmetrical dissociated configuration is the most stable. The symmetrical molecularly adsorbed configuration is unstable with respect to lowering of symmetry, and is separated from the fully dissociated configuration by at most a very small energy barrier. The calculated dissociative adsorption energies for TiO2 and SnO2 are in reasonable agreement with the results of thermal desorption experiments. Calculated total and local electronic densities of states for dissociatively and molecularly adsorbed configurations are presented, and their relation with experimental UPS spectra is discussed.  相似文献   

12.
Hui Liu 《Surface science》2007,601(14):3149-3157
The growth mechanism of Au-clusters on fullerene layers has been investigated by scanning tunneling microscopy in ultrahigh vacuum at room temperature. The fullerene layers, which serve as substrates, are formed on a graphite surface and exhibit the typical combination of round and fractal shapes, and small sections of the original graphite substrate are exposed. The immobile Au-clusters are concentrated on the C60 terminated surface section, and the original fullerene island structures are preserved. A preferential nucleation of Au-clusters is observed at the C60-graphite edges while the C60-C60 edges remains undecorated. These Au-clusters are placed directly on the edge and shared by the graphite and fullerene layer. They form bead-like structures, which densely populate this edge, while the first layer C60 islands are clearly depleted of Au-clusters. A roughness analysis of the fullerene surface indicates the presence of Au atoms (or very small clusters), which are embedded in the fullerene surface, and likely situated in the troughs in between the large molecules. These Au atoms are highly mobile and cannot be individually resolved at room temperature. The analysis of the spatial and size distributions of Au-clusters provides the basis for the development of a qualitative model, which describes the relevant surface processes in the Au-fullerene system. The simultaneous deposition of Au and fullerene on graphite leads to the formation of highly organized structures, in which Au-clusters are embedded in a ring of fullerene molecules with a constant width of about 4 nm. The mechanism for the formation of these structures is highly speculative at present and further experiments will be pursued in the near future. A comprehensive analysis of the Au-C60 system is presented, which contributes to the advancement in our understanding of the metal-fullerene interaction and furthers the development of composite materials of interest in the synthesis of solar cells and metal contacts to organic materials.  相似文献   

13.
The atomic structure of the Au/Si(1 1 1)-(5 × 2) surface has been studied by density-functional theory calculations. Two structure models, proposed experimentally by Marks et al. and Hasegawa et al., have been examined on an equal ground. In our total-energy calculations, both models are found to be locally stable and energetically comparable. In our electronic-structure analyses, however, both models fail to reproduce the key features of angle-resolved photoemission spectra and scanning-tunneling-microscopy images, indicating that the considered models need to be modified. Suggestions for the modification are given based on the present calculations.  相似文献   

14.
Bias-voltage dependent images of Al0.2Ga0.8As-{1 1 0} are presented. The images show both the filled- and empty-states of the surface. Apart from voltage-dependent changes in the apparent direction of the atomic rows also observed for binary III-V semiconductors, bright and dark areas about 2 nm in diameter appear at small voltage in filled-states images, and small ridges along [−1 1 0] appear at small voltage in empty-states images. The spatial extent of the bright and dark areas observed in filled-states images is thought to be determined by the electron-electron interaction. It is also shown that when a given patch of Al0.2Ga0.8As-{1 1 0} surface is imaged simultaneously in the filled- and empty-states mode, the locations and spatial extent of the alloy-related minima (the “dark patches”) do not coincide. This casts doubt on the assumption that a locally decreased tunneling probability represents an increased local content of Al.  相似文献   

15.
The structure of the hydroxylated hematite (0 0 0 1) surface was investigated using crystal truncation rod diffraction and density functional theory. The combined experimental and theoretical results suggest that the surface is dominated by two hydroxyl moieties—hydroxyls that are singly coordinated and doubly coordinated with Fe. The results are consistent with the formation of distinct domains of these surface species; one corresponding to the hydroxylation of the surface Fe-cation predicted to be most stable under UHV conditions, and the second a complete removal of this surface Fe species leaving the hydroxylated oxygen layer. Furthermore, our results indicate that the hydroxylated hematite surface structures are significantly more stable than their dehydroxylated counterparts at high water partial pressures, and this transition in stability occurs at water pressures orders of magnitude below the same transition for α-alumina. These results explain the observed differences in reactivity of hematite and alumina (0 0 0 1) surfaces with respect to water and binding of aqueous metal cations.  相似文献   

16.
The Au(1 0 0) surface structure in contact with 1-ethyl-3-methylimidazolium tetrafluoroborate (EMImBF4) has been observed using electrochemical atomic force microscopy (EC-AFM) under an electrochemically controlled potential. The AFM images, taken in EMImBF4 in the potential range from −0.6 to 0.2 V vs. Ag/Ag(I), shows a fourfold symmetry with the distance between protrusions of ≈0.30-0.32 nm. This structure agrees well with the ideal surface structure of Au(1 0 0)-(1 × 1) and it is very similar to that previously obtained in a sulfuric acid aqueous solution.  相似文献   

17.
The electronic states of the Cr overlayers on TiO2(0 0 1) surfaces have been investigated using angle-resolved and resonant photoemission spectroscopy with synchrotron radiation. At lower coverages, Cr deposition on TiO2(0 0 1) creates two well separated in-gap emissions due to the formation of surface Ti3+ (3d1) ions and Cr3+ (3d3) ions. At higher coverages, the in-gap emission is developed into the 2-peak-structure emission of Cr 3d character. The corresponding state is considered to be of metallic nature from the viewpoint of the high ability of oxygen adsorption, but has no Fermi edge, indicating a possibility of forming small Cr clusters on TiO2(0 0 1) at this stage.  相似文献   

18.
Density functional theory (DFT) calculations of the calcium tungstate material scheelite CaWO4 have shown that water introduced into the bulk material remains undissociated and leads to swelling and layering of the structure, a behaviour which may resemble silicate clays more than three-dimensional poly-anionic materials, but which results in a structure that is even more similar to a rare hydrous calcium carbonate phase--a finding which suggests the existence of semi-crystalline hydrous pre-cursor phases to the dehydrated scheelite material. An interatomic potential model was derived for CaWO4 which adequately reproduces structural and physical properties of the material and is in good agreement with the DFT calculations in respect of the structure and energy of hydration (DFT: 85 kJ mol−1, atomistic: 105 kJ mol−1). Atomistic simulations of a range of scheelite surfaces confirm the dominance of the experimental {1 0 1} and {0 0 1} cleavage planes in the morphology of the dry crystal and the presence of the experimentally found {1 0 3} and {1 0 1} surfaces in the hydrated morphology. Hydration of the surfaces shows non-Langmuir behaviour, where the interactions between surface calciums and oxygen atoms of the water molecules outweigh hydrogen-bonding to the surface oxygen atoms or intermolecularly within the water layer. The hydration energies indicate physisorption of water, ranging from 22 kJ mol−1 on the {0 0 1} surface to 78 kJ mol−1 on the more reactive {1 0 3} surface.  相似文献   

19.
An extensive search for possible structural models of the (2 × 1)-reconstructed rutile TiO2(0 1 1) surface was carried out by means of density functional theory (DFT) calculations. A number of models were identified that have much lower surface energies than the previously-proposed ‘titanyl’ and ‘microfaceting’ models. These new structures were tested with surface X-ray diffraction (SXRD) and voltage-dependent STM measurements. The model that is (by far) energetically most stable shows also the best agreement with SXRD data. Calculated STM images agree with the experimental ones for appropriate tunneling conditions. In contrast to previously-proposed models, this structure is not of missing-row type; because of its similarity to the fully optimized brookite TiO2(0 0 1) surface, we call it the ‘brookite (0 0 1)-like’ model. The new surface structure exhibits two different types of undercoordinated oxygen and titanium atoms, and is, in its stoichiometric form, predicted to be rather inert towards the adsorption of probe molecules.  相似文献   

20.
We have studied the scaling behavior of two-dimensional island density during submonolayer growth of CaF2 on vicinal Si(1 1 1) surfaces using scanning tunneling microscopy. We have analyzed the morphology of the Si(1 1 1) surfaces where CaF2 partial monolayers with coverages of about 0.1 monolayer are deposited at ∼600 °C. The number density of terrace nucleated islands increases with substrate terrace width l as ∼l4 in a low island density regime. This scaling behavior is consistent with predictions for the case of the irreversible growth of islands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号