首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
J. Prunier  Z. Li  S. Bourgeois 《Surface science》2007,601(4):1144-1152
The adsorption and decomposition of molybdenum hexacarbonyl on (1 1 0) TiO2 surfaces were studied using both core levels and valence band photoemission spectroscopies. It was found that after an adsorption at 140 K, when going back to room temperature, only a small part of molybdenum compounds, previously present at low temperature, remained on the TiO2 surface. This indicates that the desorption temperature on such a surface is lower than the decomposition one. The use of photon irradiation to decompose the hexacarbonyl molecule was also studied. It was shown that during such a decomposition molecular fragments were chemisorbed on the surface allowing a higher amount of metal to remain on the surface. It was also shown that it was possible to get rid of adsorbed subcarbonyl groups and to organize the metal atoms by thermal treatments at temperatures as low as 400 K, i.e. much lower than the one needed to obtain the same structures using physical vapour deposition (PVD). Moreover, due to lower used temperatures, this chemical way of deposition allows a better control of the interface than during PVD growth.  相似文献   

2.
Surface patterning is expected to influence the nucleation site of deposited nanostructures. In the present study, clean Si and SiO2 surfaces were patterned by a nanolithographic process using a Focused Ion Beam (FIB). Ge was evaporated in ultra high vacuum at 873 K on these substrates, resulting in the formation of island arrays. Based on scanning tunneling microscopy and atomic force microscopy images, a statistical analysis was performed in order to highlight the effect of patterning on the size distribution of islands compared to a non-patterned surface. We find that the self-organization mechanism on patterned substrates results in a very good arrangement and positioning of Ge nanostructures, depending on growth conditions and holes distance, both on Si and SiO2 surfaces.  相似文献   

3.
Y.J. Guo  X.T. Zu  B.Y. Wang  X.D. Jiang  X.D. Yuan  H.B. Lv  S.Z. Xu 《Optik》2009,120(18):1012-1015
Two-layer ZrO2/SiO2 and SiO2/ZrO2 films were deposited on K9 glass substrates by sol–gel dip coating method. X-ray photoelectron spectroscopy (XPS) technique was used to investigate the diffusion of ZrO2/SiO2 and SiO2/ZrO2 films. To explain the difference of diffusion between ZrO2/SiO2 and SiO2/ZrO2 films, porous ratio and surface morphology of monolayer SiO2 and ZrO2 films were analyzed by using ellipsometry and atomic force microscopy (AFM). We found that for the ZrO2/SiO2 films there was a diffusion layer with a certain thickness and the atomic concentrations of Si and Zr changed rapidly; for the SiO2/ZrO2 films, the atomic concentrations of Si and Zr changed relatively slowly, and the ZrO2 layer had diffused through the entire SiO2 layer. The difference of diffusion between ZrO2/SiO2 and SiO2/ZrO2 films was influenced by the microstructure of SiO2 and ZrO2.  相似文献   

4.
The influence of SiO2 on the dielectric properties of barium titanate ceramics was investigated. SiO2 had been doped solely and together with BaO into barium titanate before calcination. X-ray diffraction showed that all the ceramics were of a pure perovskite phase after sintering at 1275 °C for 2 h. For SiO2-doping, there was about 2.5 °C increase in Curie temperature per molar percentage of doping and the leakage current was obviously increased, especially at low voltages for relatively high doping levels. While for the co-doping of SiO2 and BaO, there was little change in Curie temperature. The point defects formed through the dopings were proposed responsible for the effects. It was suggested that SiO2 is important to barium titanate ceramics not only for sintering but also for modifying their properties.  相似文献   

5.
Novel egg-shell structured monometallic Pd/SiO2 and bimetallic Ca-Pd/SiO2 catalysts were prepared by an impregnation method using porous hollow silica (PHS) as the support and PdCl2 and Ca(NO3)2·4H2O as the precursors. It was found from transmission electron microscope (TEM), scanning electron microscope (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD) that Pd was loaded on PHS with a particle size of 5-12 nm in Pd/SiO2 samples and the Pd particle size in Ca-Pd/SiO2 was smaller than that in Pd/SiO2 since Ca could prevent Pd particles from aggregating. X-ray photoelectron spectroscopy (XPS) analyses exhibited that Pd 3d5/2 binding energies of Pd/SiO2 and Ca-Pd/SiO2 were 0.2 and 0.9 eV lower than that of bulk Pd, respectively, as a result of the shift of the electron cloud from Pd to oxygen in Pd/SiO2 and to both oxygen and Ca in Ca-Pd/SiO2. The activity of Ca-Pd/SiO2 egg-shell catalyst for CO hydrogenation and the selectivity to methanol, with a value of 36.50 mmolCO mol−1Pd s−1 and 100%, respectively, were much higher than those of the catalysts prepared with traditional silica gel as the support, owing to the porous core-shell structure of the PHS support.  相似文献   

6.
SiO2@Gd2MoO6:Eu3+ core-shell phosphors were prepared by the sol-gel process. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectra (EDS), transmission electron microscopy (TEM), photoluminescence (PL) spectra as well as kinetic decays were used to characterize the resulting SiO2@Gd2MoO6:Eu3+ core-shell phosphors. The XRD results demonstrate that the Gd2MoO6:Eu3+ layers on the SiO2 spheres begin to crystallize after annealing at 600 °C and the crystallinity increases with raising the annealing temperature. The obtained core-shell phosphors have a near perfect spherical shape with narrow size distribution (average size ca. 600 nm), are not agglomerated, and have a smooth surface. The thickness of the Gd2MoO6:Eu3+ shells on the SiO2 cores could be easily tailored by varying the number of deposition cycles (50 nm for four deposition cycles). The Eu3+ shows a strong PL luminescence (dominated by 5D0-7F2 red emission at 613 nm) under the excitation of 307 nm UV light. The PL intensity of Eu3+ increases with increasing the annealing temperature and the number of coating cycles.  相似文献   

7.
马书懿  萧勇  陈辉 《中国物理》2002,11(9):960-962
The structure of Au/Si/SiO2/p-Si has been fabricated using the magnetron sputtering technique. It has a very good rectifying behaviour. Visible electroluminescence (EL) has been observed from the Au/Si/SiO2/p-Si structure at a forward bias of 5V or larger. A broad band with one peak around 650-660 nm appears in all the EL spectra of the structure. The effects of the thickness of the Si layer in the Si/SiO2 films and of the input electrical power on EL spectra are studied systematically.  相似文献   

8.
We have studied luminescence properties and microstructure of 20 patterns Si/SiO2 multilayers. The photoluminescence spectra consist of two gaussian bands in the visible-infrared spectral region. It has been demonstrated that the strong PL band is caused by the radiative recombination in the Si/SiO2 interfaces states, whereas the weaker band originates from radiative recombination in the nanosized Si layers. The peak shift of this latter band shows a discontinuity that corresponds to a crystalline-to-amorphous phase change when the Si layers are thinner than 30 Å. The peak energy as a function of the layer thickness is interpreted using a quantum confinement model in the case of amorphous Si layers.  相似文献   

9.
In this work, anodic porous alumina thin films with pores in the nanometer range are grown on silicon by electrochemistry and are used as masking material for the nanopatterning of the silicon substrate. The pore diameter and density are controlled by the electrochemical process. Through the pores of the alumina film chemical oxidation of the silicon substrate is performed, leading to the formation of regular arrays of well-separated stoichiometric silicon dioxide nanodots on silicon, with a density following the alumina pores density and a diameter adjustable by adjusting the chemical oxidation time. The alumina film is dissolved chemically after the SiO2 nanodots growth, revealing the arrays of silicon dioxide dots on silicon. In a next step, the nanodots are also removed, leaving a nanopatterned bare silicon surface with regular arrays of nanopits at the footprint of each nanodot. This silicon surface structuring finds interesting applications in nanoelectronics. One such application is in silicon nanocrystals memories, where the structuring of the oxidized silicon surface leads to the growth of discrete silicon nanocrystals of uniform size. In this work, we examine the electrical quality of the Si/SiO2 interface of a nanostructured oxidized silicon surface fabricated as above and we find that it is appropriate for electronic applications (an interface trap density below 1–3×1010 eV−1 cm−2 is obtained, indicative of the high quality of the thermal silicon oxide).  相似文献   

10.
This study examined the oxidation and reduction behavior of mass-selected Au clusters consisting of 2-13 atoms deposited on silica. An atomic oxygen environment was used for the oxidation of Au. X-ray photoelectron spectroscopy (XPS) was used to identify Au(III) and Au(O). Au5, Au7 and Au13 clusters deposited on the as-prepared SiO2/Si substrates were highly inert towards oxidation, whereas the other clusters could be oxidized, i.e. the chemical property drastically changed with the number of atoms in a cluster. The size-selectivity in chemical reactivity remained unchanged upon air-exposure. The chemical properties of the deposited Au clusters were unchanged after annealing at 250 °C. Annealing at higher temperatures caused structural changes to the surface, as determined by the oxidation behavior. XPS of the deposited Au clusters upon annealing indicated charge transfer from Au to silica.  相似文献   

11.
康朝阳  唐军  李利民  闫文盛  徐彭寿  韦世强 《物理学报》2012,61(3):37302-037302
在分子束外延(MBE)设备中,利用直接沉积C原子的方法在覆盖有SiO2的Si衬底(SiO2/Si)上生长石墨烯,并通过Raman光谱和近边X射线吸收精细结构谱等实验技术对不同衬底温度(500℃,600℃,700℃,900℃,1100℃,1200℃)生长的薄膜进行结构表征.实验结果表明,在衬底温度较低时生长的薄膜是无定形碳,在衬底温度高于700℃时薄膜具有石墨烯的特征,而且石墨烯的结晶质量随着衬底温度的升高而改善,但过高的衬底温度会使石墨烯质量降低.衬底温度为1100℃时结晶质量最好.衬底温度较低时C原子活性较低,难以形成有序的C-sp2六方环.而衬底温度过高时(1200℃),衬底表面部分SiO2分解,C原子与表面的Si原子或者O原子结合而阻止石墨烯的形成,并产生表面缺陷导致石墨烯结晶变差.  相似文献   

12.
This paper investigated the gaseous formaldehyde degradation by the amine-functionalized SiO2/TiO2 photocatalytic films for improving indoor air quality. The films were synthesized via the co-condensation reaction of methyltrimethoxysilane (MTMOS) and 3-aminopropyltrimethoxysilane (APTMS). The physicochemical properties of prepared photocatalysts were characterized with N2 adsorption/desorption isotherms measurement, X-ray diffraction (XRD) and Fourier Transform Infrared spectroscopy (FT/IR). The effect of amine-functional groups and the ratio of MTMOS/APTMS precursors on the formaldehyde adsorption and photocatalytic degradation were investigated. The results showed that the formaldehyde adsorption and photocatalytic degradation of the APTMS-functionalized SiO2/TiO2 film was higher than that of SiO2/TiO2 film due to the surface adsorption on amine sites and the relatively high of the specific surface area of the APTMS-functionalized SiO2/TiO2 film (15 times higher than SiO2/TiO2). The enhancement of the formaldehyde degradation of the film can be attributed to the synergetic effect of adsorption and subsequent photocatalytic decomposition. The repeatability of photocatalytic film was also tested and the degradation efficiency was 91.0% of initial efficiency after seven cycles.  相似文献   

13.
Room temperature photoluminescence (PL) at around 600 nm from magnetron-sputtered SiO2 films co-doped with Ge is reported. The PL signal is observed in pure SiO2, however, its intensity increases significantly in the presence of Ge-nanocrystals (Ge-nc). The PL intensity has been optimized by varying the temperature of heat treatment, type of gas during heat treatment, concentration of Ge in the SiO2 films, and gas pressure during deposition. Maximum intensity occurs when Ge-nc of around 3.5 nm are present in large concentration in SiO2 layers deposited at fairly high gas pressure. Based on time resolved PL, and PL measurements after α-particle irradiation or H passivation, we attribute the origin of the PL to a defect in SiO2 (probably an O deficiency) that is excited through an energy transfer from Ge-nc. There is no direct PL from the Ge-nc; however, there is a strong coupling between excitons created in the Ge-nc and the SiO2 defect.  相似文献   

14.
A new type of multicoated silica/zirconia/silver (SiO2/ZrO2/Ag) core-shell composite microspheres is synthesized in this paper. In the process, ZrO2-decorated silica (SiO2/ZrO2) core-shell composites were firstly fabricated by the modification of zirconia on silica microspheres through the hydrolysis of zirconium precursor. Subsequently, on SiO2/ZrO2 composite cores, silver nanoparticles were introduced via ultrasonic irradiation and acted as “Ag seeds” for the formation of integrate silver shell by further reduction of silver ions using formaldehyde as reducer. The resulting samples were characterized by transmission electron microscopy, X-ray diffraction, Fourier-transform infrared, energy-dispersive X-ray, and UV-vis spectroscopy, indicating that zirconia and silver layers were successfully coated on the surfaces of silica microspheres.  相似文献   

15.
Collagen/SiO2 composites were prepared in aqueous suspensions. Adsorption behaviors of collagen onto the surfaces of SiO2 spheres were studied. Structure and thermal properties were measured with FTIR, SEM, TEM, and TGA-DTA. The results showed that the self-aggregation of collagen macromolecules was taken place during the adsorption of collagen on SiO2 sphere. The morphology of collagen evolved from line to microfibrils with the increase in the concentration of collagen along with the distortion of SiO2. Interfacial interactions of electrostatic forces and hydrogen bonding between the collagen macromolecule and SiO2 sphere had a vital effect on the adsorption of collagen. The amount of the collagen adsorption was increased with the increase of the collagen concentration, yet decreased in increased pH value of the solution. It was found that the composites exhibited lower infrared emissivity values in the wavelength ranged from 8 to 14 μm than not only pure collagen but also SiO2 sphere, and the value of infrared emissivity was related to the adsorption amount of collagen in the composites.  相似文献   

16.
We report on continuous-wave laser induced crystallisation processes occurring in Si/SiO2 multiple quantum wells (MQW), prepared by remote plasma enhanced chemical vapour deposition of amorphous Si and SiO2 layers on quartz substrates. The size and the volume fraction of the Si nanocrystals in the layers were estimated employing micro-Raman spectroscopy. It was found that several processes occur in the Si/SiO2 MQW system upon laser treatment, i.e. amorphous to nanocrystalline conversion, Si oxidation and dissolution of the nanocrystals. The speed of these processes depends on laser power density and the wavelength, as well as on the thickness of Si-rich layers. At optimal laser annealing conditions, it was possible to achieve ∼100% crystallinity for 3, 5 and 10 nm thickness of deposited amorphous Si layers. Crystallization induced variation of the light absorption in the layers can explain the complicated process of Si nanocrystals formation during the laser treatment.  相似文献   

17.
This paper relates a complete study of Si/SiO2 multilayer (ML) structures. First, we suggest an original way of synthesis based on reactive magnetron sputtering of a pure silica target. The photoluminescence spectra of these MLs consist of two Gaussian bands in the visible-near infrared spectral region. The stronger one (I band) is fixed at about 780 nm and probably due to interface states. The weaker one (Q band) is tuneable with the Si sublayer thickness and originates from a radiative recombination within the nanosized Si layers. For this latter band the peak position is a function of the Si sublayer thickness and shows a discontinuity at 30 Å. This corresponds to an Si phase change. For thicknesses above 30 Å, the sublayers are composed of nanocrystalline silicon whereas below 30 Å the sublayers are made of amorphous silicon. We develop a model based on a quantum well to which we have added an interfacial region between Si and SiO2. It is characterised by an interfacial potential of 0.3 eV. This model depicts the simultaneous behaviour of Q and I bands for an Si sublayer thickness below 30 Å.  相似文献   

18.
Aminated-CoFe2O4/SiO2 magnetic nanoparticles (NPs) were prepared from primary silica particles using modified StÖber method. Glucose oxidase (GOD) was immobilized on CoFe2O4/SiO2 NPs via cross-linking with glutaraldehyde (GA). The optimal immobilization condition was achieved with 1% (v/v) GA, cross-linking time of 3 h, solution pH of 7.0 and 0.4 mg GOD (in 3.0 mg carrier). The immobilized GOD showed maximal catalytic activity at pH 6.5 and 40 °C. After immobilization, the GOD exhibited improved thermal, storage and operation stability. The immobilized GOD still maintained 80% of its initial activity after the incubation at 50 °C for 25 min, whereas free enzyme had only 20% of initial activity after the same incubation. After kept at 4 °C for 28 days, the immobilized and free enzyme retained 87% and 40% of initial activity, respectively. The immobilized GOD maintained approximately 57% of initial activity after reused 7 times. The KM (Michaelis-Menten constant) values for immobilized GOD and free GOD were 14.6 mM and 27.1 mM, respectively.  相似文献   

19.
Cathodoluminescence (CL) properties of SiO2 powders activated with thulium (Tm3+) and holmium (Ho3+) ions prepared by a sol–gel process were investigated. Different molar concentrations of Tm3+ co-doped with Ho3+ were studied. The 460 nm peak was monitored and the influence of the beam energy and concentration of Tm3+ ions on the emission properties of this peak was also monitored. The peculiar behavior whereby the 460 nm emission peak decreases and the increase in the 705 and 865 nm peaks with the increase in the concentration of Tm3+ ions is reported. The relationship between the accelerating beam voltage and the CL intensity of the blue emission peak (460 nm peak) is established. Morphology, particle size and optical properties were characterized with Scanning electron microscopy (SEM), UV/VIS Lambda 750 S spectrometer and Auger electron spectroscopy (AES) equipped with Ocean Optics S2000, respectively.  相似文献   

20.
We produced dielectric stacks composed of ALD SiO2 and ALD Al2O3, such as SiO2/Al2O3, Al2O3/SiO2, and SiO2/Al2O3/SiO2, and measured the leakage currents through the stacks in comparison with those of the single oxide layers. SiO2/Al2O3 shows lowest leakage current for negative bias region below 6.4 V, and Al2O3/SiO2 showed highest current under negative biases below 4.5 V. Two distinct electron conduction regimes are observed for Al2O3 and SiO2/Al2O3. Poole-Frenkel emission is dominant at the high-voltage regime for both dielectrics, whereas the direct tunneling through the dielectric is dominant at the low-voltage regime. The calculated transition voltage between two regimes for SiO2 (6.5 nm)/Al2O3 (12.6 nm) is −6.4 V, which agrees well with the experimental observation (−6.1 V). For the same EOT of entire dielectric stack, the transition voltage between two regimes decreases with thinner SiO2 layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号