首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
The derivation of conservation laws for the wave equation on sphere, cone and flat space is considered. The partial Noether approach is applied for wave equation on curved surfaces in terms of the coefficients of the first fundamental form (FFF) and the partial Noether operator's determining equations are derived. These determining equations are then used to construct the partial Noether operators and conserved vectors for the wave equation on different surfaces. The conserved vectors for the wave equation on the sphere, cone and flat space are simplified using the Lie point symmetry generators of the equation and conserved vectors with the help of the symmetry conservation laws relation.  相似文献   

2.
Based on a suitable ansätz approach and Hirota’s bilinear form, kink solitary wave, rogue wave and mixed exponential–algebraic solitary wave solutions of (2+1)-dimensional Burgers equation are derived. The completely non-elastic interaction between kink solitary wave and rogue wave for the (2+1)-dimensional Burgers equation are presented. These results enrich the variety of the dynamics of higher dimensional nonlinear wave field.  相似文献   

3.
The traveling wave solutions of the generalized nonlinear derivative Schrödinger equation and the high-order dispersive nonlinear Schrödinger equation are studied by using the approach of dynamical systems and the theory of bifurcations. With the aid of Maple, all bifurcations and phase portraits in the parametric space are obtained. All possible explicit parametric representations of the bounded traveling wave solutions (solitary wave solutions, kink and anti-kink wave solutions and periodic wave solutions) are given.  相似文献   

4.
Many wave propagation phenomena in classical physics are governed by equations that can be recast in Schrödinger form. In this approach the classical wave equation (e.g., Maxwell's equations, acoustic equation, elastic equation) is rewritten in Schrödinger form, leading to the study of the spectral theory of its classical wave operator, a self-adjoint, partial differential operator on a Hilbert space of vector-valued, square integrable functions. Physically interesting inhomogeneous media give rise to nonsmooth coefficients. We construct a generalized eigenfunction expansion for classical wave operators with nonsmooth coefficients. Our construction yields polynomially bounded generalized eigenfunctions, the set of generalized eigenvalues forming a subset of the operator's spectrum with full spectral measure.  相似文献   

5.

The main aim of this paper is to study the exact traveling wave solutions of the generalized Kudryashov–Sinelshchikov equation by using the auxiliary equation method based on the conclusion of qualitative analysis. The advantage of this method is to choose the effective and proper auxiliary equation on the base of the behaviors and traits of solutions revealed by analysis of phase portraits to study the solution of differential equations. By applying the proposed approach to the generalized Kudryashov–Sinelshchikov equation, the number, behavior and existence of smooth and non-smooth traveling wave solutions are gained, at the same time, the new exact smooth solitary, periodic wave solutions and cusp solitary, periodic wave solutions are obtained. From the dynamic point of view, the behavior of traveling wave solutions is analyzed. The profile,type and the form of exact expression of traveling wave solutions are influenced by the order of nonlinear term and nonlinear terms.

  相似文献   

6.
In this paper, we construct new explicit exact solutions for the coupled the (2 + 1)-dimensional Konopelchenko–Dubrovsky equation (KD equation) by using a improved mapping approach and variable separation method. By means of the method, new types of variable-separation solutions (including solitary wave solutions, periodic wave solutions and rational function solutions) for the KD system are successfully obtained. The improved mapping approach and variable separation method can be applied to other higher-dimensional coupled nonlinear evolution equations.  相似文献   

7.
The tanh method is used to find travelling wave solutions to various wave equations. In this paper, the extended tanh function method is further improved by the generalizing Riccati equation mapping method and picking up its new solutions. In order to test the validity of this approach, the (2 + 1)-dimensional Boiti–Leon–Pempinelle equation is considered. As a result, the abundant new non-travelling wave solutions are obtained.  相似文献   

8.
The Helmholtz equation arises when modeling wave propagation in the frequency domain. The equation is discretized as an indefinite linear system, which is difficult to solve at high wave numbers. In many applications, the solution of the Helmholtz equation is required for a point source. In this case, it is possible to reformulate the equation as two separate equations: one for the travel time of the wave and one for its amplitude. The travel time is obtained by a solution of the factored eikonal equation, and the amplitude is obtained by solving a complex‐valued advection–diffusion–reaction equation. The reformulated equation is equivalent to the original Helmholtz equation, and the differences between the numerical solutions of these equations arise only from discretization errors. We develop an efficient multigrid solver for obtaining the amplitude given the travel time, which can be efficiently computed. This approach is advantageous because the amplitude is typically smooth in this case and, hence, more suitable for multigrid solvers than the standard Helmholtz discretization. We demonstrate that our second‐order advection–diffusion–reaction discretization is more accurate than the standard second‐order discretization at high wave numbers, as long as there are no reflections or caustics. Moreover, we show that using our approach, the problem can be solved more efficiently than using the common shifted Laplacian multigrid approach.  相似文献   

9.
A model is developed mathematically to represent sound propagation in a three-dimensional ocean. The complete development is based on characteristics of the physical environment, mathematical theory, and computational accuracy.While the two-dimentional underwater acoustic wave propagation problem is not yet solved completely for range-dependent environments,three-dimentional environmental effects, such as fronts and eddies, often cannot be neglected. To predict underwater sound propagation, one usually deals with the solution of the Helmholtz (reduced wave) equation. This elliptical equation, along with a set of boundary conditions including a wall condition at the maximum range, forms a well-posed problem, which is pure boundary-value problem. An existing approach to economically solve this three-dimensional range-dependent problem is by means of a two-dimensional parabolic partial differential equation. This parabolic approximation approach, within the limitation of mathematical and acoustical approximations, offers efficient solutions to a class of long-range propagation problems. The parabolic wave equation is much easier to solve than the elliptic equation; one major saving is the removal of the wall boundary condition at the maximum range. The application of the two-dimensional parabolic wave equation to a number of realistic problems has been successful.We discuss the extension of the parabolic equation approach to three-dimensional problems. This paper begins with general considerations of the three-dimensional elliptic wave equation and shows how to transform this equation into parabolic equations which are easier to solve. The development of this paper focuses on wide angle three-dimensional underwater acoustic propagation and accommodates as a special case prevoius developments by other authors. In the course of our development, the physical properties, mathematical validity, and computational accuracy are the primary factors considered. We describe how parabolic wave equations are derived and how wide angle propagation is taken into consideration. Then, a discussion of the limitations and the advantages of the parabolic equation approximation is highlighted. These provide the background for the mathematical formulation of three-dimensional underwater acoustic wave propagation models.Modelling the mathematical solution to three-dimensional underwater acoustic wave propagation involves difficulties both in describing the theoretical acoustics and in performing the large scale computations. We have used the mathematical and physical properties of the problem to simplify considerably. Simplications allow us to introduce a three-dimensional mathematical model for underwater acoustic propagation predictions. Our wide angle three-dimensional parabolic equation model is theoretically justifiable and computationally accurate. This model offers a variety of capabilities to handle a class of long-range propagation problems under acoustical environments with three-dimensional variations.  相似文献   

10.
Using the binary Darboux transformation for the (2 + 1)-dimensional dispersive long wave equation, the “universal” variable separable formula is extended in a different way. From the extended formula, much more abundant localized excitations with arbitrary boundary conditions for the dispersive long wave equation can be obtained. The results obtained via the multi-linear variable separation approach are only a special case of the first step binary Darboux transformation. Two special interacting solutions are explicitly given. Especially, one of the examples exhibits a new interacting phenomenon: a localized solitary wave (dromion) can force an extended wave (solitoff) go back.  相似文献   

11.
Some doubly periodic (Jacobi elliptic function) solutions of the modified Kawahara equation are presented in closed form. Our approach is to introduce a new auxiliary ordinary differential equation and use its Jacobi elliptic function solutions to construct doubly periodic solutions of the modified Kawahara equation. When the module m → 1, these solutions degenerate to the exact solitary wave solutions of the equation. Then we reveal the relation of some exact solutions for the modified Kawahara equation obtained by other authors.  相似文献   

12.
In this article, the extended Riccati equation method is applied to seeking more general exact travelling wave solutions of the ZK equation. The traveling wave solutions are expressed by the hyperbolic functions, the trigonometric functions and the rational functions. When the parameters are taken as special values, the solitary wave solutions are obtained from the hyperbolic function solutions. Similarly, the periodic wave solutions are also obtained from the trigonometric function solutions. The approach developed in this paper is effective and it may also be used for solving many other nonlinear evolution equations in mathematical physics.  相似文献   

13.
New conservative finite difference schemes for certain classes of nonlinear wave equations are proposed. The key tool there is “discrete variational derivative”, by which discrete conservation property is realized. A similar approach for the target equations was recently proposed by Furihata, but in this paper a different approach is explored, where the target equations are first transformed to the equivalent system representations which are more natural forms to see conservation properties. Applications for the nonlinear Klein–Gordon equation and the so-called “good” Boussinesq equation are presented. Numerical examples reveal the good performance of the new schemes.  相似文献   

14.
Under investigation in this paper is a generalized (2+1)-dimensional Boussinesq equation, which can be used to describe the water wave interaction. By using Bell polynomials, a lucid and systematic approach is proposed to systematically study the integrability of the equation, including its bilinear representation, soliton solutions, periodic wave solutions, Bäcklund transformation and Lax pairs, respectively. Furthermore, by virtue of its Lax equations, the infinite conservation laws of the equation are also derived with the recursion formulas. Finally, the asymptotic behavior of periodic wave solutions is shown with a limiting procedure.  相似文献   

15.
When one uses high-order finite difference schemes for the wave equation, for instance fourth order schemes, the treatment of boundary conditions poses a real difficulty since one needs several additional equations (for the nodes close to the boundary), while one single scalar boundary condition is available. In the case of perfectly reflecting boundary conditions, namely the homogeneous Neumann or Dirichlet conditions, this difficulty can be overcomed by the use of the well-known image principle, which permits the extension of the equation outside of the domain of calculation by an appropriate symmetrization of the data. We propose in this article a generalization of this principle to the absorbing boundary conditions. Through a symmetrization process, we are led to introduce a damped wave equation with a damping term supported by the boundary. The treatment of the boundary condition is then replaced by the approximation of this new damped wave equation in the whole space. The theoretical justification of our approach is based on new energy estimates for the wave equation (when high-order absorbing boundary conditions are used), and constitutes an alternative to the use of the well-known Kreiss criterion to prove the stability of the associated initial boundary value problems. © 1994 John Wiley & Sons, Inc.  相似文献   

16.
In this paper, an analytical method is proposed to construct explicitly exact and approximate solutions for nonlinear evolution equations. By using this method, some new traveling wave solutions of the Kuramoto-Sivashinsky equation and the Benny equation are obtained explicitly. These solutions include solitary wave solutions, singular traveling wave solutions and periodical wave solutions. These results indicate that in some cases our analytical approach is an effective method to obtain traveling solitary wave solutions of various nonlinear evolution equations. It can also be applied to some related nonlinear dynamical systems.  相似文献   

17.
Riccati equation approach is used to look for exact travelling wave solutions of some nonlinear physical models. Solitary wave solutions are established for the modified KdV equation, the Boussinesq equation and the Zakharov-Kuznetsov equation. New generalized solitary wave solutions with some free parameters are derived. The obtained solutions, which includes some previously known solitary wave solutions and some new ones, are expressed by a composition of Riccati differential equation solution...  相似文献   

18.
An analytic study of the nonlinear Kolmogorov-Petrovskii-Piskunov (KPP) equation is presented in this paper. The Riccati equation method combined with the generalized extended $(G''/G)$-expansion method is an interesting approach to find more general exact solutions of the nonlinear evolution equations in mathematical physics. We obtain the traveling wave solutions involving parameters, which are expressed by the hyperbolic and trigonometric function solutions. When the parameters are taken as special values, the solitary and periodic wave solutions are given. Comparison of our new results in this paper with the well-known results are given.  相似文献   

19.
Under investigation in this paper is an extended Korteweg–de Vries equation. Via Bell polynomial approach and symbolic computation, this equation is transformed into two kinds of bilinear equations by choosing different coefficients, namely KdV–SK‐type equation and KdV–Lax‐type equation. On the one hand, N‐soliton solutions, bilinear Bäcklund transformation, Lax pair, Darboux covariant Lax pair, and infinite conservation laws of the KdV–Lax‐type equation are constructed. On the other hand, on the basis of Hirota bilinear method and Riemann theta function, quasiperiodic wave solution of the KdV–SK‐type equation is also presented, and the exact relation between the one periodic wave solution and the one soliton solution is established. It is rigorously shown that the one periodic wave solution tend to the one soliton solution under a small amplitude limit. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
In this paper, a nonstationary analog of the range refraction parabolic equation is derived. A new approach to the derivation of Tappert’s operator asymptotic formula with the use of noncommutative analysis is presented. The obtained nonstationary equation is proposed as an artificial boundary condition for the wave equation in underwater acoustics. This form of artificial boundary condition has low computational cost and systematically takes into account variations of sound speed. This is confirmed by various numerical experiments, including propagation of normal modes and wave fields produced by point source.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号