首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The use of cyclopentadienyl ligands in organometallic chemistry and catalysis is ubiquitous, mostly due to their robust spectator role. Nonetheless, increasing examples of non-innocent behaviour are being documented. Here, we provide evidence for reversible intramolecular C−H activation at one methyl terminus of C5Me5 in [(η-C5Me5)Rh(PMe3)2] to form a new Rh−H bond, a process so far restricted to early transition metals. Experimental evidence was acquired from bimetallic rhodium/gold structures in which the gold center binds either to the rhodium atom or to the activated Cp* ring. Reversibility of the C−H activation event regenerates the RhI and AuI monometallic precursors, whose cooperative reactivity towards polar E−H bonds (E=O, N), including the N−H bonds in ammonia, can be understood in terms of bimetallic frustration.  相似文献   

2.
The title compound, [CuNa(C4H3O7S)(C10H8N2)(H2O)3]n, consists of one CuII cation, one NaI cation, one 2‐sulfonatobutanedioate trianion (SSC3−), one 2,2′‐bipyridyl (bpy) ligand and three coordinated water molecules as the building unit. The coordination of the CuII cation is composed of two pyridyl N atoms, one water O atom and two carboxylate O atoms in a distorted square‐pyramidal coordination geometry with an axial elongation. The NaI cation is six‐coordinated by three water molecules and three carboxylate O atoms from three SSC3− ligands in a distorted octahedral geometry. Two SSC3− ligands link two CuII cations to form a Cu2(SSC)2(bpy)2 macrocyclic unit lying across an inversion centre, which is further linked by NaI cations via Na—O bonds to give a one‐dimensional chain. Interchain hydrogen bonds link these chains to form a two‐dimensional layer, which is further extended into a three‐dimensional supramolecular framework through π–π stacking interactions. The thermal stability of the title compound has also been investigated.  相似文献   

3.
The structure of the title compound, (C2H10N2)[WOS3], consists of ethyl­ene­diammonium dications and tetra­hedral [WOS3]2− dianions, which are linked with the aid of four varieties of hydrogen bond, namely N—H⋯O, N—H⋯S, C—H⋯O and C—H⋯S. The strength and number of these hydrogen bonds affect the W—O and W—S bond distances.  相似文献   

4.
The bifunctional pyridine‐2,3‐dicarboxylic acid (H2pdc) ligand has one N atom and four O atoms, which could bind more than one AgI centre with diverse binding modes. A novel infinite one‐dimensional AgI coordination polymer, namely catena‐poly[[silver(I)‐(μ2‐pyridine‐2,3‐dicarboxylato‐κ2N :O 3)‐silver(I)‐tris(μ2‐5‐methyl‐1,3,4‐thiodiazol‐2‐amine‐κ2N :N ′)] monohydrate ethanol monosolvate], {[Ag2(C7H3NO4)(C3H5N3S)3]·H2O·C2H5OH}n , has been synthesized using H2pdc and 5‐methyl‐1,3,4‐thiadiazol‐2‐amine (tda), and characterized by single‐crystal X‐ray diffraction. One AgI atom is located in a four‐coordinated AgN4 tetrahedral geometry and the other AgI atom is in a tetrahedral AgN3O geometry. A dinuclear AgI cluster formed by three tda ligands with a paddelwheel configuration is bridged by the dianionic pdc2− ligand into a one‐dimensional coordination polymer. Interchain N—H…O hydrogen bonds extend the one‐dimensional chains into an undulating two‐dimensional sheet. The sheets are further packed into a three‐dimensional supramolecular framework by interchain N—H…O hydrogen bonds.  相似文献   

5.
Digallane [L1Ga−GaL1] ( 1 , L1=dpp-bian=1,2-[(2,6-iPr2C6H3)NC]2C12H6) reacts with RN=C=O (R=Ph or Tos) by [2+4] cycloaddition of the isocyanate C=N bonds across both of its C=C−N−Ga fragments to afford [L1(O=C−NR)Ga−Ga(RN−C=O)L1] (R=Ph, 3 ; R=Tos, 4 ). The reactions with both isocyanates result in new C−C and N−Ga single bonds. In the case of allyl isocyanate, the [2+4] cycloaddition across one C=C−N−Ga fragment of 1 is accompanied by insertion of a second allyl isocyanate molecule into the Ga−N bond of the same fragment to afford compound [L1Ga−Ga(AllN− C=O)2L1] ( 5 ) (All=allyl). In the presence of Na metal, the related digallane [L2Ga−GaL2] ( 2 ; L2=dpp-dad=[(2,6-iPr2C6H3)NC(CH3)]2) is converted into the gallium(I) carbene analogue [L2Ga:] ( 2 A ), which undergoes a variety of reactions with isocyanate substrates. These include the cycloaddition of ethyl isocyanate to 2 A affording [Na2(THF)5]{L2Ga[EtN−C(O)]2GaL2} ( 6 ), cleavage of the N=C bond with release of 1 equiv. of CO to give [Na(THF)2]2[L2Ga(p-MeC6H4)(N−C(O))2−N(p-MeC6H4)]2 ( 7 ), cleavage of the C=O bond to yield the di-O-bridged digallium compound [Na(THF)3]2[L2Ga-(μ-O)2-GaL2] ( 8 ), and generation of the further addition product [Na2(THF)5][L2Ga(CyNCO2)]2 ( 9 ). Complexes 3 – 9 have been characterized by NMR (1H, 13C), IR spectroscopy, elemental analysis, and X-ray diffraction analysis. Their electronic structures have been examined by DFT calculations.  相似文献   

6.
As appreciation for nonclassical hydrogen bonds has progressively increased, so have efforts to characterize these interesting interactions. Whereas several kinds of C−H hydrogen bonds have been well-studied, much less is known about the R3N+−C−H⋅⋅⋅X variety. Herein, we present crystallographic and spectroscopic evidence for the existence of these interactions, with special relevance to Selectfluor chemistry. Of particular note is the propensity for Lewis bases to engage in nonclassical hydrogen bonding over halogen bonding with the electrophilic F atom of Selectfluor. Further, the first examples of 1H NMR experiments detailing R3N+−C−H⋅⋅⋅X (X=O, N) hydrogen bonds are described.  相似文献   

7.
The title compound, 2C14H13N2+·S2O82−·2H2O, is a protonated amine salt which is formed from two rather uncommon ionic species, namely a peroxodisulfate (pds2−) anion, which lies across a crystallographic inversion centre, and a 2,9‐dimethyl‐1,10‐phenanthrolin‐1‐ium (Hdmph+) cation lying in a general position. Each pds2− anion binds to two water molecules through strong water–peroxo O—H...O interactions, giving rise to an unprecedented planar network of hydrogen‐bonded macrocycles which run parallel to (100). The atoms of the large R88(30) rings are provided by four water molecules bridging in fully extended form (...H—O—H...) and four pds2− anions alternately acting as long (...O—S—O—O—S—O...) and short (...O—S—O...) bridges. The Hdmph+ cations, in turn, bind to these units through hydrogen bonds involving their protonated N atoms. In addition, the crystal structure also contains π–π and aromatic–peroxo C—H...O interactions.  相似文献   

8.
Cocrystallization of imidazole or 4‐methylimidazole with 2,2′‐dithiodibenzoic acid from methanol solution yields the title 2:1 and 1:1 organic salts, 2C3H5N2+·C14H10O4S22−, (I), and C4H7N2+·C14H10O4S2, (II), respectively. Compound (I) crystallizes in the monoclinic C2/c space group with the mid‐point of the S—S bond lying on a twofold axis. The component ions in (I) are linked by intermolecular N—H...O hydrogen bonds to form a two‐dimensional network, which is further linked by C—H...O hydrogen bonds into a three‐dimensional network. In contrast, by means of N—H...O, N—H...S and O—H...O hydrogen bonds, the component ions in (II) are linked into a tape and adjacent tapes are further linked by π–π, C—H...O and C—H...π interactions, resulting in a three‐dimensional network.  相似文献   

9.
The title compound, C18H26N2S22+·2I·2C3H6O, is an intermediate in the design of the zwitterionic thiolate 4‐(trimethylammonio)benzenethiolate (Tab), in which a pair of aryl‐substituted S atoms are linked by a covalent bond. The central S—S bond length is 2.020 (3) Å and the Car—S—S—Car torsion angle is −84.1 (2)°. The crystal structure is stabilized by nonclassical hydrogen bonds which occur as intramolecular C—H...I interactions and intermolecular C—H...S and C—H...O contacts. In the crystal structure, both the dication and the two symmetrically independent iodide counter‐anions are located on twofold crystallographic axes, whereas the acetone solvent molecule occupies a general position.  相似文献   

10.
Transition-metal catalyzed coupling to form C−N bonds is significant in chemical science. However, the inert nature of N2 and CO2 renders their coupling quite challenging. Herein, we report the activation of dinitrogen in the mild plasma atmosphere by the gas-phase monometallic YB1–4 anions and further coupling of CO2 to form C−N bonds by using mass spectrometry and theoretical calculation. The observed product anions are NCNBO and N(BO)2, accompanied by the formation of neutral products YO and YB0–2NC, respectively. We can tune the reactivity and the type of products by manipulating the number of B atoms. The B atoms in YB1–4N2 act as electron donors in CO2 reduction reactions, and the carbon atom originating from CO2 serves as an electron reservoir. This is the first example of gas-phase monometallic anions, which are capable to realize the functionalization of N2 with CO2 through C−N bond formation and N−N and C−O bond cleavage.  相似文献   

11.
We report a porous three-dimensional anionic tetrazolium based CuI−MOF 1 , which is capable of cleaving the N−H bond of ammonia and primary amine, as well as the O−H bond of H2O along with spontaneous H2 evolution. In the gas-solid phase reaction of 1 with ammonia and water vapor, CuI−MOF 1 was gradually oxidized to NH2−CuII−MOF and OH−CuII−MOF, through single-crystal-to-single-crystal (SCSC) structural transformations, which was confirmed by XPS, PXRD and X-ray single-crystal diffraction. Density functional theory (DFT) demonstrated that CuI−MOF could lower N−H bond dissociation free energy of ammonia through coordination-induced bond weakening and promote H2 evolution by the reduction potential of 1 . To our knowledge, this is the first example of MOFs that activate ammonia and amine in gas-solid manner.  相似文献   

12.
We report a new air-stable PdI dimer, [Pd(μ-I)(PCy2tBu)]2, which triggers E-selective olefin migration to enamides and styrene derivatives in the presence of multiple functional groups and with complete tolerance of air. The same dimer also triggers extremely rapid C−C coupling (alkylation and arylation) at room temperature in a modular and triply selective fashion of aromatic C−Br, C−OTf/OFs, and C−Cl bonds in poly(pseudo)halogenated arenes, displaying superior activity over previous PdI dimer generations for substrates that bear substituents ortho to C−OTf.  相似文献   

13.
Metallic conductive 1T phase molybdenum sulfide (MoS2) has been identified as promising anode for sodium ion (Na+) batteries, but its metastable feature makes it difficult to obtain and its restacking during the charge/discharge processing result in part capacity reversibility. Herein, a synergetic effect of atomic-interface engineering is employed for constructing 2H-MoS2 layers assembled on single atomically dispersed Fe−N−C (SA Fe−N−C) anode material that boosts its reversible capacity. The work-function-driven-electron transfer occurs from SA Fe−N−C to 2H-MoS2 via the Fe−S bonds, which enhances the adsorption of Na+ by 2H-MoS2, and lays the foundation for the sodiation process. A phase transfer from 2H to 1T/2H MoS2 with the ferromagnetic spin-polarization of SA Fe−N−C occurs during the sodiation/desodiation process, which significantly enhances the Na+ storage kinetics, and thus the 1T/2H MoS2/SA Fe−N−C display a high electronic conductivity and a fast Na+ diffusion rate.  相似文献   

14.
The title salt, [Zn(C2N2H8)3]2[CdI4]I2, conventionally abbreviated [Zn(en)3]2[CdI4]I2, where en is ethyl­enediamine, contains discrete [Zn(en)3]2+ cations and [CdI4]2− anions with distorted octa­hedral and nearly tetra­hedral geometries, respectively, as well as uncoordinated I ions. The cation and the free I anion lie on twofold rotation axes and the [CdI4]2− anion lies on a axis in the space group I2d. The structure exhibits numerous weak inter‐ionic hydrogen bonds of two types, viz. N—H⋯I(free ion) and N—H⋯I([CdI4]2−), which support the resulting three‐dimensional framework.  相似文献   

15.
The development of methods for selective cleavage reactions of thermodynamically stable C−C/C=C bonds in a green manner is a challenging research field which is largely unexplored. Herein, we present a heterogeneous Fe−N−C catalyst with highly dispersed iron centers that allows for the oxidative C−C/C=C bond cleavage of amines, secondary alcohols, ketones, and olefins in the presence of air (O2) and water (H2O). Mechanistic studies reveal the presence of water to be essential for the performance of the Fe−N−C system, boosting the product yield from <1 % to >90 %. Combined spectroscopic characterizations and control experiments suggest the singlet 1O2 and hydroxide species generated from O2 and H2O, respectively, take selectively part in the C−C bond cleavage. The broad applicability (>40 examples) even for complex drugs as well as high activity, selectivity, and durability under comparably mild conditions highlight this unique catalytic system.  相似文献   

16.
The title compound, 3CH6N+·HPO42−·H2PO4, aggregates with the moieties interconnected by O—H⋯O and N—H⋯O hydrogen bonds, with O⋯O and N⋯O distances in the ranges 2.5366 (16)–2.5785 (14) and 2.7437 (16)–2.9967 (18) Å, respectively. Three C—H⋯O hydrogen bonds are also present, with C⋯O distances in the range 3.2310 (18)–3.3345 (17) Å. All H atoms are ordered. Structures with ordered hydrogenphosphate and di­hydrogen­phosphate components are rare.  相似文献   

17.
Insertion reactions that involve stabilized electrophilic metallocarbenes are of great importance for installing α-heteroatoms to carbonyl compounds. Nevertheless, the limited availability of carbene precursors restricts the introduction of only a single heteroatom. In this report, we describe a new approach based on an I(III)/S(VI) reagent that promotes the cascade insertion of heteroatoms. This is achieved by sequentially generating two α-heteroatom-substituted metal carbenes in one reaction. We found that this mixed I(III)/S(VI) ylide reacts efficiently with a transition metal catalyst and an X−H bond (where X=O, N). This transformation leads to the sequential formation of a sulfoxonium- and an X-substituted Rh-carbenes, enabling further reactions with another Y−H bond. Remarkably, a wide range of symmetrical and unsymmetrical α,α-O,O-, α,α-O,N-, and α,α-N,N-subsituted ketones can be prepared under mild ambient conditions. In addition, we successfully demonstrated other cascades, such as CN/CN double amidation, C−H/C−S double insertion, and C−S/Y−H double insertion (where Y=S, N, O, C). Notably, the latter two cascades enabled the simultaneous installation of three functional groups to the α-carbon of carbonyl compounds in a single step. These reactions demonstrate the versatility of our approach, allowing for the synthesis of ketones and esters with multiple α-heteroatoms using a common precursor.  相似文献   

18.
Polymorph (Ia) of eldoral [5‐ethyl‐5‐(piperidin‐1‐yl)barbituric acid or 5‐ethyl‐5‐(piperidin‐1‐yl)‐1,3‐diazinane‐2,4,6‐trione], C11H17N3O3, displays a hydrogen‐bonded layer structure parallel to (100). The piperidine N atom and the barbiturate carbonyl group in the 2‐position are utilized in N—H...N and N—H...O=C hydrogen bonds, respectively. The structure of polymorph (Ib) contains pseudosymmetry elements. The two independent molecules of (Ib) are connected via N—H...O=C(4/6‐position) and N—H...N(piperidine) hydrogen bonds to give a chain structure in the [100] direction. The hydrogen‐bonded layers, parallel to (010), formed in the salt diethylammonium 5‐ethyl‐5‐(piperidin‐1‐yl)barbiturate [or diethylammonium 5‐ethyl‐2,4,6‐trioxo‐5‐(piperidin‐1‐yl)‐1,3‐diazinan‐1‐ide], C4H12N+·C11H16N3O3, (II), closely resemble the corresponding hydrogen‐bonded structure in polymorph (Ia). Like many other 5,5‐disubstituted derivatives of barbituric acid, polymorphs (Ia) and (Ib) contain the R22(8) N—H...O=C hydrogen‐bond motif. However, the overall hydrogen‐bonded chain and layer structures of (Ia) and (Ib) are unique because of the involvement of the hydrogen‐bond acceptor function in the piperidine group.  相似文献   

19.
The title compound, poly[[μ4‐5‐carboxy‐4‐carboxylato‐2‐(pyridin‐4‐yl)‐1H‐imidazol‐1‐ido]disilver(I)], [Ag2(C10H5N3O4)]n, was synthesized by reacting silver nitrate with 2‐(pyridin‐4‐yl)‐1H‐imidazole‐4,5‐dicarboxylic acid (H3PyIDC) under hydrothermal conditions. The asymmetric unit contains two crystallographically independent AgI cations and one unique HPyIDC2− anion. Both AgI cations are three‐coordinated in distorted T‐shaped coordination geometries. One AgI cation is coordinated by one N and two O atoms from two HPyIDC2− anions, while the other is bonded to one O and two N atoms from two HPyIDC2− anions. It is interesting to note that the HPyIDC2− group acts as a μ4‐bridging ligand to link the AgI cations into a three‐dimensional framework, which can be simplified as a diamondoid topology. The thermal stability and photoluminescent properties of the title compound have also been studied.  相似文献   

20.
N‐Heterocyclic carbene based pincer ligands bearing a central silyl donor, [CSiC], have been envisioned as a class of strongly σ‐donating ligands that can be used for synthesizing electron‐rich transition‐metal complexes for the activation of inert bonds. However, this type of pincer ligand and complexes thereof have remained elusive owing to their challenging synthesis. We herein describe the first synthesis of a CSiC pincer ligand scaffold through the coupling of a silyl–NHC chelate with a benzyl–NHC chelate induced by one‐electron oxidation in the coordination sphere of a cobalt complex. The monoanionic CSiC ligand stabilizes the CoI dinitrogen complex [(CSiC)Co(N2)] with an unusual coordination geometry and enables the challenging oxidative addition of E−H bonds (E=C, N, O) to CoI to form CoIII complexes. The structure and reactivity of the cobalt(I) complex are ascribed to the unique electronic properties of the CSiC pincer ligand, which provides a strong trans effect and pronounced σ‐donation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号