首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent advances in asymmetric phase-transfer catalysis   总被引:1,自引:0,他引:1  
The use of chiral nonracemic onium salts and crown ethers as effective phase-transfer catalysts have been studied intensively primarily for enantioselective carbon-carbon or carbon-heteroatom bond-forming reactions under mild biphasic conditions. An essential issue for optimal asymmetric catalysis is the rational design of catalysts for targeted reaction, which allows generation of a well-defined chiral ion pair that reacts with electrophiles in a highly efficient and stereoselective manner. This concept, together with the synthetic versatility of phase-transfer catalysis, provides a reliable and general strategy for the practical asymmetric synthesis of highly valuable organic compounds.  相似文献   

2.
A simple synthesis of a library of novel C−N axially chiral iodoarenes is achieved in a three-step synthesis from commercially available aniline derivatives. C−N axial chiral iodine reagents are rarely investigated in the hypervalent iodine arena. The potential of the novel chiral iodoarenes as organocatalysts for stereoselective oxidative transformations is assessed using the well explored, but challenging stereoselective α-oxytosylation of ketones. All investigated reagents catalyse the stereoselective oxidation of propiophenone to the corresponding chiral α-oxytosylated products with good stereochemical control. Using the optimised reaction conditions a wide range of products was obtained in generally good to excellent yields and with good enantioselectivities.  相似文献   

3.
Diastereoselective domino reactions of iminoalcohols and allenyl H-phosphinates produce chiral phosphorus bicycles in a regio- and stereoselective fashion. A predictive model for diastereoselection is used for these new chiral phosphinic esters.  相似文献   

4.
Kinetic resolution of racemic sulfoxides requires either custom substrates or shows moderate enantioselectivity, leading to achiral coproducts (such as sulfones) as an intrinsic part of the process. A new strategy is demonstrated that allows the resolution of racemic sulfoxides through catalytic asymmetric nitrene‐transfer reactions. This approach gives rise to both optically active sulfoxides and highly enantioenriched sulfoximines. By using a chiral iron catalyst and a readily available iodinane reagent, high selectivity factors have been achieved under very practical reaction conditions. With respect to the substrate scope, it is noteworthy that this unprecedented imidative kinetic resolution of racemic sulfoxides provides access to both aryl–alkyl and dialkyl sulfoximines in highly enantioenriched forms.  相似文献   

5.
The development of catalytic processes that effect enantioselective bond formation under mild conditions is an important and challenging task in modern chemical synthesis. In this connection, chiral C2-symmetric ansa-metallocenes (bridged metallocenes) have found notable applications as catalysts. This article discusses the chemistry of this class of chiral metallocene complexes with regard to their utility in catalytic and enantioselective C? C and C? H bond formation reactions. In addition, where applicable, a brief comparison with other related catalytic enantioselective processes is offered. Many of the reactions effected with high levels of enantioselectivity by catalytic amounts of these complexes are of great significance to the preparation of new materials and in the synthesis of therapeutic agents. For example, zirconocene complexes readily catalyze the enantioselective addition of alkylmagnesium halides to alkenes, and cationic zirconocene complexes may promote the highly stereoregulated copolymerization of terminal alkenes. Furthermore, the related chiral titanocenes are involved in an impressive range of useful asymmetric catalytic reactions, including the enantioselective hydrogenation of olefins and reduction of imines or ketones. This review attempts to bring together the practical aspects of the use of [(ebthi)M] complexes of Group 4 transition metals (catalyst synthesis and resolution), outline the manner in which the C2-symmetric chiral ligands are believed to initiate stereoselective bond formation, and highlight the aspects of this chemistry that are less well understood and require further research.  相似文献   

6.
The continuous flow, enantioselective, organophotoredox catalytic asymmetric alkylation of aldehydes was studied, by using a homemade, custom-designed photoreactor for reactions under cryogenic conditions. Going from microfluidic conditions up to a 10 mL mesofluidic reactor, an increase of productivity by almost 18000 % compared to the batch reaction was demonstrated. Finally, for the first time, a stereoselective photoredox organocatalytic continuous flow reaction in a fully telescoped process for an active pharmaceutical ingredient (API)synthesis was successfully achieved. The final process consists of four units of operation: visible light-driven asymmetric catalytic benzylation under continuous flow, inline continuous work-up, neutralisation and a final oxidative amidation step afforded the pharmaceutically active molecule in 95 % e.e.  相似文献   

7.
The first stereoselective rhodium-catalyzed intermolecular aziridination and C-H amination of alkenes to produce chiral carbamate-protected aziridines and allylic amines is described. Good yields and diastereoselectivities were achieved using a readily available chiral N-tosyloxycarbamate and stoichiometric amount of the alkene substrate. Furthermore the protecting group is easy to cleave under mild reaction conditions.  相似文献   

8.
Sonogashira‐type cross‐couplings are one of the most significant alkynylations in organic chemistry. One of the first palladium‐catalyzed intramolecular Heck/Sonogashira reactions of alkenes with terminal alkynes is now reported. With this method, a variety of uniquely substituted chiral benzene‐fused heterocycles bearing a propargyl‐substituted all‐carbon quaternary stereocenter were obtained in a straightforward, high‐yielding, and highly stereoselective manner under mild conditions. Salient features of this process include the use of readily available substrates, high selectivities, a broad substrate scope as well as versatile product functionalizations.  相似文献   

9.
Racemization is the key step to turn a kinetic resolution process into dynamic resolution. A general strategy for racemization under mild reaction conditions by employing stereoselective biocatalysts is presented, in which racemization is achieved by employing a pair of stereocomplementary biocatalysts that reversibly interconvert an sp3 to a sp2 center. The formal interconversion of the enantiomers proceeds via a prochiral sp2 intermediate the formation of which is catalyzed either by two stereocomplementary enzymes or by a single enzyme with low stereoselectivity. By choosing appropriate reaction conditions, the amount of the prochiral intermediate is kept to a minimum. This general strategy, which is applicable to redox enzymes (e.g., by acting on R2CHOH and R2CHNHR groups) and lyase-catalyzed addition-elimination reactions, was proven for the racemization of secondary alcohols by employing alcohol dehydrogenases. Thus, enantiopure chiral alcohols were used as model substrates and were racemized either with highly stereoselective biocatalysts or by using (rarely found) non-selective enzymes.  相似文献   

10.
Chiral spiropyrazolinepenicillanates were obtained in a stereoselective fashion via 1,3-dipolar cycloaddition reactions of 6-alkylidenepenicillanates with diphenyldiazomethane, phenyldiazomethane, and diazomethane. Microwave-induced ring contraction of spiro-1-pyrazoline-β-lactams leading to chiral spirocyclopropylpenicillanates is also described.  相似文献   

11.
Roman B?aszczyk 《Tetrahedron》2010,66(52):9840-7546
An efficient one-pot synthesis of secondary N-carbamate protected syn-β-amino-α-nitroalkanephosphonates using diethyl nitromethanephosphonate and N-Boc or N-Cbz imines, generated in situ from stable N-Boc or N-Cbz α-aminoalkyl-p-tolylsulfones has been developed under PTC conditions. A model enantioselective version of this reaction is also described. Enantioselectivity up to 67% ee is achieved using a chiral thiourea catalyst derived from a cinchona alkaloid. Completely stereoselective conversion of the title compounds into partially N-carbamate protected syn-1,2-diaminoalkanephosphonates has also been elaborated.  相似文献   

12.
Highly stereoselective chelation-controlled Pd(0)-catalyzed beta-arylations and beta-vinylations of a five-membered chiral, pyrrolidine-based vinyl ether were achieved using aryl- and vinyl chlorides as substrates, yielding quaternary 2-aryl/vinyl-2-methyl cyclopentanones in 89-96% ee under neutral reaction conditions.  相似文献   

13.
Recently, chiral highly acidic Brønsted acids have emerged as powerful catalysts for enantioselective C C and C X bond‐forming reactions. Their strong acidity renders them valuable tools for the activation of imines, carbonyl compounds, and other weakly basic substrates. As a result, new perspectives are opened and highly stereoselective transformations based on the concept of chiral contact‐ion‐pair catalysis can be realized. This Minireview gives an overview of the design and application of these new organocatalysts and presents recent results in this rapidly growing field.  相似文献   

14.
A new bifunctional ligand bearing chiral N-heterocyclic carbene (NHC) and prolinol moieties is presented. Utilizing the designed ligand, an in situ formed Cu/Zn hetero-bimetallic complex unlocks the asymmetric allylic alkylation reactions of allyl phosphates with zinc keto-homoenolates, leading to the formation of various γ-vinyl ketones with good regio- and enantio-selectivity. DF sT calculation supports that the chelation of allyl phosphates with catalyst promotes the SN2’ addition and the ligand-substrate steric interactions account for the stereoselective outcome.  相似文献   

15.
This paper describes the recent advances in the conceptually new bifunctional Ir and Ru catalysts for asymmetric catalytic reactions. These reactions include the enantioselective Michael addition of 1,3‐dicarbonyl compounds to cyclic enones and nitroalkenes, and the enantioselective direct amination of α‐cyanoacetates with diazoesters. The outcome of these reactions in terms of reactivity and selectivity was delicately influenced by the catalyst structures and the reaction conditions including the solvents used. Even with a 1 : 1 molar ratio of donors to acceptors, the reactions proceeded smoothly to give the corresponding chiral adducts with an excellent yield and enantiomeric excess (ee). Preliminary mechanistic studies showed that the key stage of the catalytic cycle is the interaction of the bifunctional catalyst with a pronucleophilic reagent that leads to stereoselective formation of C‐, O‐, or N‐bound complexes. The resulting protonated catalyst bearing metal‐bound nucleophiles readily reacts with electrophiles to provide C? C and C? N bond formation products in a highly stereoselective manner. © 2009 The Japan Chemical Journal Forum and Wiley Periodicals, Inc. Chem Rec 9: 106–123; 2009: Published online in Wiley InterScience ( www.interscience.wiley.com ) DOI 10.1002/tcr.20172  相似文献   

16.
The stereoselective synthesis of amino acids is of great importance for the construction of optically active natural products and pharmaceuticals. Apart from enzymes, a broad repertoire of chiral reagents, auxiliaries, and catalysts can be used for the formation of amino acids. Asymmetric reactions using catalytic amounts of chiral molecules provide efficient methods for the generation of optically active proteinogenic and nonproteinogenic amino acids. This minireview collects recent work on catalytic asymmetric synthesis of alpha- and beta-amino acids.  相似文献   

17.
The coupling of similarly polarized carbon fragments can be achieved by a reductive umpolung strategy. This gives access to compounds with functional groups in even bond distances, which are difficult to synthesize by other means. Low‐valent titanium catalysts enable such couplings under mild conditions. This account covers the recent progress on this topic with a focus on the development of cross‐selective coupling reactions and stereoselective examples.  相似文献   

18.
A short and stereoselective synthesis of manzacidins A and C, and their enantiomers was achieved via stereoselective hydrogenation reactions of dehydroamino acid esters 5-8 using a chiral Rh catalyst.  相似文献   

19.
Catalytic asymmetric synthesis of unsymmetrical triarylmethanes with a chiral all‐carbon quaternary center was achieved by using a chiral bifunctional quaternary phosphonium bromide catalyst in the SNAr reaction of 3‐aryloxindoles under phase‐transfer conditions. The presence of a urea moiety in the chiral phase‐transfer catalyst was important for obtaining high enantioselectivity in this reaction.  相似文献   

20.
Quaternary ammonium salts play an important role in asymmetric catalysis. In this Minireview, how asymmetric ion-pairing catalysis with ammonium ions has been utilized in organic synthesis is explained, particularly in the design of novel catalytic cycles. This includes the use of chiral ammonium-based catalysts for the construction of challenging stereogenic centers. Ammonium-derived electrophilic reagents, typically formed in situ and in the context of phase-transfer catalysis (PTC), have also been utilized in asymmetric bond-forming reactions. Furthermore, ammonium salts have been employed as substrates in several stereocontrolled C−N bond cleavage processes, leading to enantioenriched products by using novel asymmetric induction modes. In addition, merging ammonium ion-pairing catalysis with other catalytic approaches has also emerged as a new platform for achieving previously less straightforward reactions, thereby allowing new synthetic applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号