首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Supported palladium catalyst (Pd/Fe3O4@SiO2) was easily prepared by supporting PdCl2 on silica‐coated magnetic nanoparticles Fe3O4 in ethylene glycol. The as‐prepared sample was characterized by infrared spectroscopy (IR), X‐ray diffraction (XRD) and X‐ray photoelectron spectrometer (XPS). The formation of active specie Pd(0) was confirmed by XRD and XPS, and the Pd loading for the fresh and recovered catalyst was determined by atomic absorption spectroscopy (AAS). Pd/Fe3O4@SiO2 was employed for the synthesis of biphenyl derivatives via Suzuki reaction. In terms of the yield of biphenyl, the supported catalyst displayed nearly equal catalytic performance to that of homologous PdCl2 under microwave irradiation for 30 min but higher than that obtained by traditional heating method for 12 h. The catalytic performance of Pd/Fe3O4@SiO2 for Suzuki reactions involving various aryl halides and arylboronic acids were also examined. Impressive yield of biphenyl at 68.2% was obtained even in the presence of unreactive aryl chlorides. Pd/Fe3O4@SiO2 was recovered by a permanent magnet and directly reused in the next run, and no obvious deactivation was observed for up to 6 times. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
Oxidation of metallic Pd(0) particles applied onto an oxide support with Fe(III) ions in a concentration not exceeding 0.06 M at 70°C was studied. In contrast to palladium black, with the supported catalyst Pd/ZrO2 Pd(II) is formed in the solution in the concentration corresponding to the thermodynamic equilibrium. With an increase in the initial Fe(III) concentration, the equilibrium yield of Pd(II) increases. The initial reaction rate grows with an increase in the weight of the initial Pd-containing catalyst and in the initial Fe(III) concentration. The revealed kinetic relationships of the dissolution of Pd(0) in the reaction with Fe(III) aqua ions allow a conclusion that, in oxidation of lower olefins C2-C4 in the catalytic system Fe(III)_Pd/ZrO2 in aqueous solution, Pd(II) is regenerated in the catalytic cycle by oxidation of Pd(I) species, rather than of Pd(0), with Fe(III) aqua ions.  相似文献   

3.
The catalytic system Pd/C—HCl is highly active in the reduction of mandelic acid derivatives to phenylacetic acid derivatives with carbon monoxide when the aromatic ring is para-substituted with a hydroxy group. Typical reaction conditions are: 70–110 °C, 20–100 atm of carbon monoxide, benzene—ethanol as reaction medium, substrate/Pd=102–104/1, HCl/substrate=0.3–0.8/1. [Pd] = 10−2 −10−4 M. When the catalytic system is used in combination with PPh3 a slightly higher activity is observed. Comparable results are observed when using a Pd(II) catalyst precursor such as PdX2, in combination with PPh3, or PdX2(PPh3)2 (XCl, AcO). When operating at 110 °C, decomposition to metallic palladium occurs. Pd(II) complexes with diphosphine ligands, such as diphenylphosphinemethane, -ethane, -propane or -butane, do not show any catalytic activity and are recovered unchanged. These observations suggest that Pd(0) complexes play a key role in the catalytic cycle. The proposed catalytic cycle proceeds as follows: the chloride ArCHClCOOR, formed in situ upon reaction of ArCHOHCOOR with hydrochloric acid, oxidatively adds to a Pd(0) species with formation of a catalytic intermediate having a Pd—[CH(Ar)COOR] moiety, which inserts a CO molecule, yielding an acyl intermediate of the type Pd—[COCH(Ar)COOR]. The nucleophilic attack of H2O on the carbon atom of the carbonyl ligand gives back the Pd(0) complex to the catalytic cycle and yields a phenylmalonic acid derivative, which produces the final product, ArCH2COOR, upon CO2 evolution. Alternatively, protonolysis of the intermediate having a Pd—[CH(Ar)COOR] moiety yields directly the final product and a Pd(II) species, which is then reduced by CO to Pd(0). Moreover, no catalytic activity is observed when the Pd/C—HCl system is used in combination with any one of the above diphosphine ligands, probably because these ligands block the sites on the catalyst able to promote the catalytic cycle or because they prevent the reduction of Pd(II) to Pd(0). The influence of the following reaction parameters has been studied: concentration of HCl, PPh3, palladium and substrate, pressure of carbon monoxide, the temperature, reaction time and solvent. The results are compared with those obtained in the carbonylation of aromatic aldehydes to phenylacetic acid derivatives catalyzed by the same system, for which it has been proposed that the catalysis occurs via carbonylation of the aldehyde to a mandelic acid derivative as an intermediate, which is further reduced with CO to yield the final product.  相似文献   

4.
Polysiloxane microspheres containing a large number of silanol groups were obtained by an emulsion process of modified polyhydromethylsiloxane. N‐substituted imidazole groups were grafted on these microspheres by the silylation of their silanol groups with N‐[γ‐(dimethylchlorosilyl)propyl]imidazole hydrochloride. The progress of the reaction was monitored using 29Si and 13C magic angle spinning (MAS) NMR and its impact on microsphere morphology was studied using scanning electron microscopy (SEM). The usefulness of the imidazole‐functionalized microspheres as a support for a metal catalyst was demonstrated by their reaction with PdCl2(PhCN)2. In this way a new heterogenized catalyst, Pd(II) complex with imidazole ligands supported on polysiloxane microspheres, was generated. This catalyst, MPd , was characterized using 13C and 29Si MAS NMR, X‐ray photoelectron, Fourier transform infrared and far‐infrared spectroscopies, X‐ray diffraction, SEM–energy‐dispersive X‐ray spectroscopy and wide‐angle X‐ray scattering. The catalyst appears in two structures, as Pd(II) complex and Pd(0) nanoclusters. Its catalytic activity was tested using a model reaction, the hydrogenation of cinnamaldehyde, and compared with that of an analogous complex operating in a homogeneous system. MPd showed a high activity in the promotion of hydrogenation of cinnamaldehyde. The activity in the substrate conversion was stable at least in five cycles of this reaction. The main product was hydrocinnamaldehyde which could be obtained with a yield above 70%. A mechanism of the reaction is proposed. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
This paper reports a green magnetic quasiheterogeneous efficient palladium catalyst in which Pd0 nanoparticles have been immobilized in self‐assembled hyperbranched polyglycidole (SAHPG)‐coated magnetic Fe3O4 nanoparticles (Fe3O4‐SAHPG‐Pd0). This catalyst has been used for effective ligandless Pd catalyzed Suzuki–Miyaura coupling reactions of different aryl halides with substituted boronic acids at room temperature and in aqueous media. Herein, SAHPG is used as support; it also acts as a reducing agent and stabilizer to promote the transformation of PdII to Pd0 nanoparticles. Also, this environmental friendly quasiheterogeneous catalyst is employed for the first time in the synthesis of new pyrimido[4,5‐b]indoles via oxidative addition/C? H activation reactions on the pyrimidine rings, which were obtained with higher yield and faster than when Pd(OAc)2 was used as the catalyst. Interestingly, the above‐mentioned catalyst could be recovered in a facile manner from the reaction mixture by applying an external magnet device and recycled several times with no significant decrease in the catalytic activity.  相似文献   

6.
Catalytic carbonylation of quaternary ammonium salts under anhydrous conditions was investigated using palladium catalyst. The carbonylation of tetramethylammonium iodide was chosen as a model reaction and studied systematically. Ligand‐free PdCl2 showed efficient catalytic performance for this transformation. A palladium catalyst loading as low as 0.05 mol% was sufficient for high yield (96.9%) of N,N‐dimethylacetamide, corresponding to a turnover frequency of 242 h?1. Under optimum conditions, several other quaternary ammonium halides were also carbonylated to corresponding tertiary amides in moderate to excellent yields. The catalytic activity of commercial palladium on activated carbon (Pd/C) catalyst was also evaluated. The Pd/C catalyst exhibited high activity for this carbonylation reaction and could be recycled six times with a slight decrease in activity. Furthermore, mechanistic considerations concerning Pd‐catalyzed carbonylation of quaternary ammonium halides were also discussed. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
We have developed a sequential and selective Pd‐catalyzed double‐Heck arylation of ethylene that results in non‐symmetrical nitro‐stilbene analogs of trans‐resveratrol at excellent yields. A catalytic system consisting of Pd(OAc)2 and P(o‐tolyl)3 permitted us to carry out the two consecutive Heck arylations without losing activity from the first to the second Heck reaction. After the first Heck arylation of ethylene, no isolation or additional catalyst loading is required for the second Heck arylation reaction. This protocol was applied to the synthesis of methylated trans‐resveratrol, which was obtained at a 65% overall yield. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
A green palladium (Pd)‐based catalyst supported on Rosa canina fruit extract‐modified graphene oxide [Pd nanoparticles (NPs)/reduced graphene oxide (RGO)‐Rosa canina] hybrid materials has been used as a recoverable and heterogeneous nanocatalyst for cyanating aryl halides using K4[Fe (CN)6] as the resource of cyanide. The nitriles were achieved in good to high yield, and the catalyst can be recovered and reused for up to seven cycles with no remarkable decrease in its catalytic activity.  相似文献   

9.
This article describes the synthesis and functions of phosphine or phosphine oxide functionalized networks (PP? P or PP? PO; PP=porous polymer). These materials were predominantly microporous and exhibited high surface areas (SBET: 1284 and 1353 m2 g?1 for PP? P and PP? PO, respectively), with high CO2 (2.46 and 3.83 mmol g?1 for PP? P and PP? PO, respectively) uptake capacities. Pd nanoparticles can be simply incorporated into the functionalized networks (PP? P? Pd or PP? PO? Pd) through a facile one‐step impregnation. A yield of 98 % was obtained in the Suzuki reaction between 1‐chlorobenzene and p‐tolylboronic acid with the PP? P? Pd system, which was higher than that obtained when PP? PO? Pd (53.2 %) or [Pd(PPh3)4] (38.2 %) was used as the catalyst. The superior catalytic ability of PP? P? Pd can be attributed to the structural features that incorporate triarylphosphine within a microporous structure.  相似文献   

10.
An artificial metalloenzyme based on the covalent grafting of a nonheme FeII polyazadentate complex into bovine β‐lactoglobulin has been prepared and characterized by using various spectroscopic techniques. Attachment of the FeII catalyst to the protein scaffold is shown to occur specifically at Cys121. In addition, spectrophotometric titration with cyanide ions based on the spin‐state conversion of the initial high spin (S=2) FeII complex into a low spin (S=0) one allows qualitative and quantitative characterization of the metal center’s first coordination sphere. This biohybrid catalyst activates hydrogen peroxide to oxidize thioanisole into phenylmethylsulfoxide as the sole product with an enantiomeric excess of up to 20 %. Investigation of the reaction between the biohybrid system and H2O2 reveals the generation of a high spin (S=5/2) FeIII2‐O2) intermediate, which is proposed to be responsible for the catalytic sulfoxidation of the substrate.  相似文献   

11.
The effects of the Pd content (0–1 wt %) and the synthesis method (joint impregnation with Ni + Pd and Pd/Ni or Ni/Pd sequential impregnation) on the physicochemical and catalytic properties of Ni–Pd/CeZrO2/Al2O3 were studied in order to develop an efficient catalyst for the conversion of methane into hydrogen-containing gas. It was shown that variation in the palladium content and a change in the method used for the introduction of an active constituent into the support matrix make it possible to regulate the redox properties of nickel cations but do not affect the size of NiO particles (14.0 ± 0.5 nm) and the phase composition of the catalyst ((γ + δ)-Al2O3, CeZrO2 solid solution, and NiO). It was established that the activity of Ni–Pd catalysts in the reaction of autothermal methane reforming depends on the method of synthesis and increases in the following order: Ni + Pd < Ni/Pd < Pd/Ni. It was found that, as the Pd content of the Ni–Pd/CeZrO2/Al2O3 catalyst was decreased from 1 to 0.05 wt %, the ability for self-activation, high activity, and operational stability of the catalyst under the conditions of autothermal methane reforming remained unaffected: at 850°C, the yield of hydrogen was ~70% at a methane conversion of ~100% during a 24-h reaction.  相似文献   

12.
A simple and effective strategy is described for the synthesis of Pd–CdS nanopowder by the reduction of an organopalladium(II) complex, [PdCl2(cod)] (cod = cis ,cis ‐1,5‐cyclooctadiene), in the presence of CdS quantum dots (QDs) at a toluene–water interface. We investigated the impact of addition of CdS QDs on catalytic activity of Pd nanoparticles (NPs). The Pd–CdS nanopowder functions as an efficient catalyst for Suzuki–Miyaura reactions for the formation of carbon–carbon bonds. There is a high electron density on Pd NPs and due to their high electron affinity they behave as an electron scavenger from CdS increasing the rate of oxidative addition, which is the rate‐determining step of the catalytic cycle, and, just as we expect, the C─C coupling reaction with the Pd–CdS nanopowder is faster and occurs in less time than that with Pd nanocatalysts. Compared to classical reactions, this method consistently has the advantages of short reaction times, high yields in a green solvent, reusability of the catalyst without considerable loss of catalytic activity and low cost, and is a facile method for the preparation of the catalyst.  相似文献   

13.
高效组合型 Pd/C 催化剂用于 Suzuki 偶联反应   总被引:3,自引:0,他引:3  
 采用有机金属 Pd2(dba)3 (dba 为二亚苄基丙酮) 还原分解法制得均匀分布的 Pd 纳米颗粒 (粒径为 3~6 nm) 混合液, 并用活性炭直接吸附得到了组合型 Pd/C 纳米催化剂. 采用透射电子显微镜、X 射线光电子能谱和 X 射线衍射等手段测定了催化剂表面 Pd 颗粒大小分布、晶型和化学态等. 将该催化剂用于 Suzuki 碳-碳偶联反应, 其催化活性比浸渍法制备的 Pd/C 催化剂高 2 倍以上. 以溴代芳烃为底物时, 在 80 oC 下 0.5 h 后偶联产物收率可达 98% 以上. 以邻氯硝基苯为底物时, 在 110 oC 下 1 h 后偶联产物收率可达 64%; 延长反应时间, 产物收率可达 90% 以上.  相似文献   

14.
In this work, a new, green and beneficial nanomagnetic catalyst was easily fabricated using sulfuric acid as an acidic group on Fe3O4 nanoparticles coated with tris (hydroxymethyl) aminomethane (THAM). The synthesized catalyst was characterized by FT-IR, TGA/DTG, XRD, TEM, EDS, VSM, and SEM analyses. Next, its catalytic activity was studied for the synthesis of dihydropyrano[2,3-c]pyrazole derivatives. This catalyst has advantages such as high catalytic activity, non-toxicity, easy separation from the reaction mixture using an external magnet and reuses for several times without significantly reducing in its catalytic activity.  相似文献   

15.
利用等体积浸渍法制备了M-Pd/TS-1(M=Ce,La,Pt,Fe,Co,Ni,Cr,Mn,Zn,Cd,Cu)系列催化剂,并将制得的催化剂用于常压下氢、氧直接合成过氧化氢的反应。考察了M的类型及负载量对M-Pd/TS-1催化剂催化性能的影响。结果表明,M选Ce时,催化剂的性能最好。Ce的最佳掺入量,n_(Ce)/(n_(Ce)+n_(Pd))=0.5%。对Ce改性与未改性的催化剂进行了TEM及静态化学吸附分析,结果表明,掺入Ce可使Pd在TS-1分子筛表面的粒度及分散度得到改善。考察了n_(O_2)/n_(H_2)比,气体流量,反应时间等反应条件对H_2转化率、H_2O_2选择性及收率的影响。在相对优化的工艺条件下,即n_(O_2)/n_(H_2)=3,气体流量为25 mL·min~(-1),反应时间为3 h时,H_2O_2,的收率可达到25.7%,TOF值为18.7 mol·mol~(-1)·h~(-1),此时溶液中H_2O_2的质量百分数为0.8%。  相似文献   

16.
An efficient catalytic system using (BeDABCO)2Pd2Cl6 (BeDABCO, benzyl‐1,4‐diazabicyclo[2.2.2]octane) was developed for the homo‐coupling reaction of various aryl halides. Due to the combination of ionic homogeneous metal catalyst and microwave irradiation, symmetric biaryls were produced in excellent yields and short reaction times in N‐methyl‐2‐pyrrolidone at 120 °C. BeDABCO as an efficient ligand and also a quaternary ammonium salt had an efficient stabilizing effect on the Pd(0) species in this coupling reaction. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
徐缓  张茂元  黄香  史大斌 《分子催化》2017,31(5):472-479
水热合成MIL-101,过量浸渍法吸附Pd(OAc)_2,原位还原Pd~(2+)制得Pd/MIL-101催化剂.采用XRD、XPS、SEM、ICP、HRTEM和N_2吸/脱附实验对其结构进行表征,催化剂Pd纳米粒子尺寸在1.5~2.5 nm之间,含量为1.5%.催化实验表明,Pd/MIL-101能高效催化吲哚C_2位芳基化,对于活性较差的溴代芳烃,也能得到中等以上的收率,催化剂循环5次后仍能保持较高的反应活性,发展了吲哚C_2位衍生物的简单、高效的合成方法.  相似文献   

18.
The hydrogenation of 1,3-pentadiene into pentenes over the commercial 0.5% Pd/Al2O3 catalyst and over a new catalyst containing 1.0% Pd and 3.7% Ag (μ-catalyst) has been investigated. The new catalyst has been prepared via the flameless wave conversion of cyclotrimethylenetrinitramine in a porous composite. The catalytic properties of the new composite in the hydrogenation reaction depend on the hydrogen/1,3-pentadiene ratio and on the catalyst activation temperature. The reaction conditions for selective 1,3-pentadiene hydrogenation have been optimized. The pentenes yield as a function of temperature passes through a maximum at any H2/C5H8 ratio between 1 and 2. The 2-pentene/1-pentene ratio in the reaction products increases as the temperature is raised.  相似文献   

19.
Heterogeneous palladium catalysts anchored on functionalized silica were prepared by sol–gel methods and their catalytic properties for the oxidative carbonylation of phenol to diphenyl carbonate (DPC) were investigated. The catalysts were characterized by means of IR, XPS, EA and BET. The Pd loading in the heterogeneous catalysts and leaching in solution were detected by atomic absorption. The effects of different reaction parameters such as temperature, solvent and inorganic cocatalyst on the yield of DPC and Pd leaching were also studied. It was found that Cu2O and tetrahydrofuran (THF) were the best partners with these heterogeneous catalysts. In the presence of 3 Å molecular sieves as dehydrating agent, the heterogeneous palladium catalyst prepared from 2‐acylpyridine revealed excellent catalytic performance and stability at 110 °C for 5 h, giving 13.7% yield of DPC based on phenol and 4.0% Pd loss in solution. The heterogeneous catalyst was more active and stable compared with traditional supported Pd? C catalyst under the same reaction conditions. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

20.
The influence of reaction conditions on catalyzed by Pd(PPh3)4 cross-coupling of 4-N,N-dimethylaminophenylmagnesium bromide with 4-bromobenzonitrile in tetrahydrofuran was investigated. The yield of the product of the catalytic process, 4-N,N-dimethylamino-4'-cyanobiphenyl, and of the main product of noncatalytic process, 4-N,N-dimethylaminophenyl 4'-bromophenyl ketone, is mainly governed by the order of introduction of reagents and catalyst into the reaction zone. Experimental observations and analysis of side products suggested conclusions on the processes resulting in deactivation of the catalyst.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号