首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The synthesis of two new acyclic nucleoside analogs, 2-(2′,3′-dihydroxypropyl)-5-amino-2H-1,2,4-thiadiazol-3-one (1) and 3-(2′,3′-dihydroxypropyl)-5-amino-3H-1,3,4-thiadiazol-2-one (2), is reported. The first compound, 1, was obtained by reaction of 3-chloro-1,2-propanediol with the sodium salt of 5-amino-2H-1,2,4-thiadiazol-3-one (3) in anhydrous dimethylformamide. Similarly, 5-amino-3H-1,3,4-thiadiazol-2-one (4) reacted with 3-chloro-1,2-propanediol to give 2. The thiadiazole 4 was prepared by condensation-cyclization of hydrazothiodicarbonamide (9).  相似文献   

2.
2,3-Diphenyl-5-formyl-6-methoxybenzofuran was reacted with hippuric acid to give 4-[(2′,3′-diphenyl-6′-methoxy-5′-benzofuranyl)methylene]-2-phenyloxazolin-5-one. The above mentioned oxazolone yielded 2,3-diphenyl-6-methoxybenzofuranylacetic acid by reaction with hydrazine hydrate, nitrous acid, benzene followed by acid hydrolysis. The reactions of the oxazolone with hydroxylamine hydrochloride and primary or secondary amines were also investigated.  相似文献   

3.
4.
5.
In the reactions of the recently synthesized β-ketoesters 1-[(3′-methoxycarbonyl- and 1-[(3′-ethoxycarbonyl-4′-oxo)-1′-cyclohexyl]-3,4-dihydroisoquinoline 4, 5 with amidines or cyclic guanidines, a number of 2-substituted-6-(6′,7′-dimethoxy-3′,4′-dihydro-1′-isoquinolyl)-5,6,7,8-tetrahydroquinazolin-4(3H)-one derivatives 6–8 were prepared. The new compounds possess various pharmacological actions.  相似文献   

6.
Cycloaddition of different acetylenic compounds on the azido function of 3′-azido-2′,3′-dideoxythymidine and 3′-azido-2′,3′-dideoxyuridine afforded products with a 1,2,3-triazol-1-yl substituent in the 3′-position. In contrast with the parent compounds, these triazolyl derivatives had no appreciable activity against human immunodeficiency virus (HIV-1).  相似文献   

7.
The cationic cyclization of cyclohexenols 8a-c gave mixtures of the octalinols 9a-c and 10a-c with 9a-c as main products. By cyclization of the isomeric educts 13a-c, the same products were formed in different proportions.  相似文献   

8.
The synthesis of the polyhalogenated phenylalanines Phe(3′,4′,5′-Br3) ( 3 ), Phe(3′,5′-Br2-4′-Cl) ( 4 ) and DL -Phe (2′,3′,4′,5′,6′-Br5) ( 9 ) is described. The trihalogenated phenylalanines 3 and 4 are obtained stereospecifically from Phe(4′-NH2) by electrophilic bromination followed by Sandmeyer reaction. The most hydrophobic amino acid 9 is synthesized from pentabromobenzyl bromide and a glycine analogue by phase-transfer catalysis. With the amino acids 4, 9 , Phe(4′-I) and D -Phe, analogues of [1-sarcosin]angiotensin II ([Sar1]AT) are produced for structure-activity studies and tritium incorporation. The diastereomeric pentabromo peptides L - and D - 13 are separated by HPLC. and identified by catalytic dehalogenation and comparison to [Sar1]AT ( 10 ) and [Sar1, D -Phe8]AT ( 14 ).  相似文献   

9.
3-(3′-,4′-Hydroxyphenyl)sydnones were prepared by dealkylation of 3-(3′-,4′-alkoxyphenyl)sydnones with concentrated sulfuric acid at room temperature in a range of 59 to 86% yield.  相似文献   

10.
5-(α-Fluorovinyl)tryptamines 4a, 4b and 5-(α-fluorovinyl)-3-(N-methyl-1′,2′,5′,6′-tetrahydropyridin-3′- and -4′-yl) indoles 5a, 5b were synthesized using 5-(α-fluorovinyl)indole ( 7 ). The target compounds are bioisosteres of 5-carboxyamido substituted tryptamines and their tetrahydropyridyl analogs.  相似文献   

11.
The electrochemical polymerization of the amino phthalic acid series has been extended to the following derivatives: 4-(4′-aminobenzamido), 4-(2′-aminobenzoyl), and 4-(3′-aminobenzoyl)phthalic acid. Reactions were performed in both dimethylacetamide and ethanol. Both systems produced a film deposit at the anode which was identified as the amide acid of the starting material. Conversion by heat to the imide produced a brittle coating. Inherent viscosity measurements indicate that only low molecular weight material was formed.  相似文献   

12.
The synthesis of a novel 2′,3′-dihydrospiro(benzofuran-2(3H),4′(1′H)isoquinoline] ring system ( IV ) by a nucleophilic aromatic fluoride displacement-cyclization is described. Preparation of various derivatives of IV as well as the precursor 4-(2-fluorobenzyl)-1,2,3,4-tetrahydro-4-isoquinolinols is also described.  相似文献   

13.
14.
A series of 2-substituted 4-oxo-3-thiazolidinylalkanoic acids bearing an isoxazole nucleus in the 2-position have been prepared. None of the compounds synthesised showed antibacterial activity in vitro.  相似文献   

15.
16.
Condensation of 2-hydroxyacetophenone with benzaldehyde in the presence of 70% perchloric acid in ethyl orthoformate gave the corresponding 4-ethoxyflavylium perchlorate, which was treated with aqueous ammonia or methylamine solution to afford 1,6,7,8-substituted 2-(3′,4′-substituted-phenyl)-4-quinolone in fair to good yield.  相似文献   

17.
On 1n,π*-excitation, the title compound 2 undergoes a photoinduced intramolecular [4 + 2]-cycloaddition affording the tetracyclic enol ether 3 as the only product in 79% yield. The assigned structure of 3 was confirmed by its conversion to the p-nitrobenzoate 6 whose structure was determined by X-ray analysis.  相似文献   

18.
The dinucleoside phosphate ΠdpΠd ( 4 ) was synthesized from the monomers 1-(5′-O-monomethoxytrityl - 2′ - deoxy - β - D - ribofuranosyl) - 2 (1 H) - pyridone ((MeOTr) Πd, 2 ) and 1-(5′-O-phosphoryl-3′-O-acetyl-2′-deoxy-β-D -ribofuranosyl)-(1H)-pyridone (pΠd(Ac), 3 ). Its 6.4% hyperchromicity and an analysis of the 1H-NMR. spectra indicate that the conformation and the base-base interactions in 4 are similar to those in natural pyrimidine dinucleoside phosphates.  相似文献   

19.
Nucleosides and Nucleotides. Part 16. The Behaviour of 1-(2′-Deoxy-β-D -ribofuranosyl)-2(1H)-pyrimidinone-5′-triphosphate, 1-(2′-Deoxy-β-D -ribofuranosyl-2(1H))-pyridinone-5′-triphosphate and 4-Amino-1-(2′-desoxy-β-D -ribofuranosyl)-2(1H)-pyridinone-5′-triphosphate towards DNA Polymerase The behaviour of nucleotide base analogs in the DNA synthesis in vitro was studied. The investigated nucleoside-5′-triphosphates 1-(2′-deoxy-β-D -ribofuranosyl)-2(1 H)-pyrimidinone-5′-triphosphate (pppMd), 1-(2′-deoxy-β-D -ribofuranosyl)-2(1 H)-pyridinone-5′-triphosphate (pppIId) and 4-amino-1-(2′-deoxy-β-D -ribofuranosyl)-2(1 H)-pyridinone-5′-triphosphate (pppZd) can be considered to be analogs of 2′-deoxy-cytidine-5′-triphosphate. However, their ability to undergo base pairing to the complementary guanine is decreased. When pppMd, pppIId or pppZd are substituted for pppCd in the enzymatic synthesis of DNA by DNA polymerase no incorporation of these analogs is observed. They exhibit only a weak inhibition of the DNA synthesis. The mode of the inhibition is uncompetitive which shows that these nucleotide analogs cannot serve as substrates for the DNA polymerase.  相似文献   

20.
Nucleosides and Nucleotides. Part 10. Synthesis of Thymidylyl-(3′-5′)-thymidylyl-(3′-5′)-1-(2′-deoxy-β-D - ribofuranosyl)-2(1 H)-pyridone The synthesis of 5′-O-monomethoxytritylthymidylyl-(3′-5′)-thymidylyl-(3′-5′)-1-(2′-deoxy-β-D -ribofuranosyl)-2(1H)-pyridone ((MeOTr)TdpTdp∏d, 5 ) and of thymidylyl-(3′-5′)-thymidylyl-(3′-5′)-1-(2′-deoxy-β-D -ribofuranosyl)-2(1 H)-pyridone (TdpTdp∏d, 11 ) by condensing (MeOTr) TdpTd ( 3 ) and p∏d(Ac) ( 4 ) in the presence of DCC in abs. pyridine is described. Condensation of (MeOTr) TdpTdp ( 6 ) with Πd(Ac) ( 7 ) did not yield the desired product 5 because compound 6 formed the 3′-pyrophosphate. The removal of the acetyl- and p-methoxytrityl protecting group was effected by treatment with conc. ammonia solution at room temperature, and acetic acid/pyridine 7 : 3 at 100°, respectively. Enzymatic degradation of the trinucleoside diphosphate 11 with phosphodiesterase I and II yielded Td, pTd and p∏d, Tdp and Πd, respectively, in correct ratios.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号