首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The direct reaction of europium with 2-propanol and phenols has been investigated under a variety of conditions. The reaction of europium metal with 2,6-dimethylphenol and 2,6-diisopropylphenol in 2-propanol at reflux revealed that polymetallic europium complexes could be generated by this method. Hx[Eu8O6(OC6H3Me2-2,6)12(OiPr)8], 1, and H5[Eu5O5(OC6H3iPr2-2,6)6(NCCH3)8], 2, were isolated by recrystallization in the presence of hexanes and acetonitrile, respectively, and characterized by X-ray crystallography. Complex 1 has a cubic arrangement of europium ions with face-bridging mu 4-O donor atoms, edge-bridging mu-O(phenoxide/phenol) ligands, and terminal O(isopropoxide/2-propanol) ligands. Complex 2 is mixed valent and has a square pyramidal europium core with four Eu(II) ions at the basal positions and one Eu(III) ion at the apex. Since these reactions gave complicated mixtures of products from which 1 and 2 could only be obtained in low yields, direct reactions under less forcing reaction conditions were investigated. Europium reacts slowly at room temperature to form arene-soluble divalent [Eu(OiPr)2(THF)x]n, 3. Complex 3 reacts with 2,6-dimethylphenol to form the arene-insoluble complex (H[Eu(OC6H3Me2)2(OiPr)])n, 4. Recrystallization of 4 in the presence of THF results in the crystallographically characterizable divalent trimetallic complex [Eu(OC6H3Me2-2,6)2(THF)2]3, 5, which has an unusual linear metal geometry. In the presence of HOiPr at ambient conditions in the glovebox, crystals of 5 slowly convert to the mixed valent H10[Eu8O8(OC6H3Me2-2,6)10(OiPr)2(THF)6], 6, which was found to have a cubic arrangement of europium atoms similar to 1 by X-ray crystallography. Complex 4, upon heating under vacuum, followed by reaction with THF, forms the arene-soluble divalent complex H18([Eu9O8(OC6H3Me2-2,6)10(THF)7][Eu9O9(OC6H3Me2-2,6)10(THF)6]), 7, which contains two types of capped cubic arrangements of europium ions in the solid state.  相似文献   

2.
The synthesis and characterization of a family of alternative precursors for the production of CdE nanoparticles (E = S, Se, and Te) is reported. The reaction of Cd(NR2)2 where NR2 = N(SiMe3)2 with n HOR led to the isolation of the following: n = 1 [Cd(mu-OCH2CMe3)(NR2)(py)]2 (1, py = pyridine), Cd[(mu-OC6H3(Me)(2)-2,6)2Cd(NR2)(py)]2 (2), [Cd(mu-OC6H3(CHMe2)(2)-2,6)(NR2)(py)]2 (3), [Cd(mu-OC6H3(CMe3)(2)-2,6)(NR2)(py)]2 (4), [Cd(mu-OC6H2(NH2)(3)-2,4,6)(NR2)(py)]2 (5), and n = 2 [Cd(mu-OC6H3(Me)(2)-2,6)(OC6H3(Me)(2)-2,6)(py)2]2 (6), and [Cd(mu-OC6H3(CMe3)(2)-2,6)(OC6H3(CMe3)(2)-2,6)(THF)]2 (7). For all but 2, the X-ray crystal structures were solved as discrete dinuclear units bridged by alkoxide ligands and either terminal -NR2 or -OR ligands depending on the stoichiometry of the initial reaction. For 2, a trinuclear species was isolated using four mu-OR and two terminal -NR2 ligands. The coordination of the Cd metal center varied from 3 to 5 where the higher coordination numbers were achieved by binding Lewis basic solvents for the less sterically demanding ligands. These complexes were further characterized in solution by 1H, 13C, and 113Cd NMR along with solid-state 113Cd NMR spectroscopy. The utility of these complexes as "alternative precursors" for the controlled preparation of nanocrystalline CdS, CdSe, and CdTe was explored. To synthesize CdE nanocrystals, select species from this family of compounds were individually heated in a coordinating solvent (trioctylphosphine oxide) and then injected with the appropriate chalcogenide stock solution. Transmission electron spectroscopy and UV-vis spectroscopy were used to characterize the resultant particles.  相似文献   

3.
Stoichiometric reaction of [ Sm(Tp(Me2))2 ], 1, with a variety of reducible ketone- and quinone-type substrates gave thermally stable, isolable radical anions/ketyls in moderate to good yields. Thus reaction with benzophenone gave [Sm(Tp(Me2))2(OCPh2)], 2, with fluorenone [Sm(Tp(Me2))2(eta1-OC13H8)], 3, and di-tert-butylparaquinone [Sm(Tp(Me2))2(eta1-OC6H2(tBu)2O)], 4, each of which was structurally characterized. In the case of the less-hindered benzoquinone, an unimetallic semiquinone [Sm(Tp(Me2))2(OC6H4O)], 5, could be isolated, although it was unstable with respect to formation of the dimetallic complex [Sm(Tp(Me2))2]2(mu-OC6H4O), 6. Compound 6 was structurally characterized, as was its anthraquinone analogue [Sm(Tp(Me2))2]2(mu-OC14H8O), 7. When the analogous reaction was carried out between the less-reducing [Eu(Tp(Me2))2] and benzoquinone, only the europium analogue of the semiquinone 5, [Eu(Tp(Me2))2(OC6H4O)], 8, could be isolated. The use of the sterically hindered 3,5-di-tert-butyl-o-benzoquinone allowed isolation of [Sm(Tp(Me2))2(DTBSQ)], 9.  相似文献   

4.
A series of N^N,O^O-bridging ligands based on substituted 1-(pyridin-2-yl)-3-methyl-5-pyrazolone and their corresponding heteroleptic iridium(III) complexes as well as Ir-Eu bimetallic complexes were synthesized and fully characterized. The influence of the triplet energy levels of the bridging ligands on the energy transfer (ET) process from the Ir(III) complexes to Eu(III) ions in solution was investigated at 77 K in Ir(III)/Eu(III) dyads. Photophysical experiment results show the bridging ligands play an important role in the ET process. Only when the triplet energy level of the bridging ligand was lower than the triplet metal-to-ligand charge transfer ((3)MLCT) energy level of the Ir moiety, was pure emission from the Eu(III) ion observed, implying complete ET took place from the Ir moiety to the Eu(III) ion.  相似文献   

5.
The new ytterbium(II) thiocyanate complex [Yb(NCS)2(thf)2] (1), synthesised by redox transmetallation between [Hg(SCN)2] and ytterbium metal in THF at room temperature, gave monomeric, eight coordinate [Yb-(NCS)2(dme)3] (2, dme = 1,2-dimethoxyethane) on crystallisation from DME, and is a powerful, synthetically useful reductant. Thus, oxidation of 1 with Hg(SCN)2, Hg(C6F5)2/HOdpp (HOdpp = 2,6-diphenylphenol), TlCp (Cp = C5H5 or CH3C5H4), Tl(Ph2pz) (Ph2pz = 3,5-diphenylpyrazolate) and CCl3CCl3 in THF yielded the ytterbium(II) complexes [Yb(NCS)3(thf)4] (3), [Yb-(NCS)2(Odpp)(thf)3](4), [Yb(NCS)2Cp-(thf)3] (Cp = C5H5 (5), CH3C5H4 (6)), [Yb(NCS)2(Ph2pz)(thf)4] (7) and [Yb(NCS)2Cl(thf)4] (8). In the solid state, complexes 4, 6 and 7 were shown by X-ray crystallography to be six, eight and eight coordinate monomers, respectively. Exclusively terminal, N-bound transoid thiocyanate bonding is observed with eta1-Odpp (4), eta5/-C5H4Me (6) and eta2-Ph2Pz (7) ligands attached approximately perpendicular to the N...N vector. The chloride complex 8 is not a molecular species, but consists of discrete, seven coordinate [YbCl2(thf)5] cations and [Yb(NCS)4(thf)3] anions. By contrast, oxidation of 1 with TlO2CPh gave a mixture of [[Yb(NCS)-(O2CPh)2(thf)2]2] (9) and 3 through rearrangement of an initially formed [Yb(NCS)2(O2CPh)] species. The X-ray structure of 9 indicates a dimeric complex with a (Yb(mu-O2CPh)4Yb] core that contains both bridging bidentate and bridging tridentate benzoate groups, and with a terminal N-bound thiocyanate and two THF ligands on each ytterbium. Reduction of Ph2CO with 1 in THF yielded the dinuclear complex [[Yb(NCS)2(thf)3]2(mu-OC(Ph)2C(Ph)2O)] (10), in which two octahedral Yb centres are bridged by a 1,1,2,2-tetraphenylethane-1,2-diolate ligand, derived from reductive coupling of the benzophenone reagent.  相似文献   

6.
Reactions of Ln(SePh)3 with SeO2 in THF give octanuclear oxoselenido clusters with the general formula (THF)8Ln8O2Se2(SePh)16 (Ln = Ce, Pr, Nd, Sm). In this isomorphous series, the eight Ln(III) ions are connected in the center by a pair of mu3-O2- ligands and mu5-Se2- ligands, with 14 bridging and two terminal selenolate ligands capping the cluster surface. Thermal decomposition at 700 degrees C of the Nd compound in vacuo led to the formation of a phase mixture of NdSe2, Nd2Se3, and Nd2O3. Near-IR emission experiments on the (THF)8Nd8O2Se2(SePh)16 and the fluorinated thiolate compound (DME)2Nd(SC6F5)3 demonstrate that clusters with oxo ligands are not only highly emissive, but also they emit at wavelengths not found in conventional oxides.  相似文献   

7.
The heterovalent trinuclear cobalt complexes [Co2IIIL4 i · CoII(H2O)4] · nXmY (L i are deprotonated Schiff bases derived from substituted salicylaldehydes and β-alanine; i = 1–3) were obtained and characterized. An X-ray diffraction study of the trinuclear cobalt complex with N-(2-carboxyethyl)salicylaldimine showed that the central Co(II) ion and the terminal Co(III) ions are linked by bridging carboxylate groups. Either terminal Co(III) atom is coordinated to two ligand molecules. They form an octahedral environment consisting of two azomethine N atoms, two phenolate O atoms, and two O atoms of two carboxylate groups. The central Co(II) atom is coordinated to four water molecules and to two O atoms of two bridging carboxylate ligands involved in the coordination sphere of the terminal Co(III) atoms.  相似文献   

8.
Yan L  Liu H  Wang J  Zhang Y  Shen Q 《Inorganic chemistry》2012,51(7):4151-4160
Metathesis reactions of YbI(2) with Li(2)L (L = Me(3)SiN(Ph)CN(CH(2))(3)NC(Ph)NSiMe(3)) in THF at a molar ratio of 1:1 and 1:2 both afforded the Yb(II) iodide complex [{YbI(DME)(2)}(2)(μ(2)-L)] (1), which was structurally characterized to be a dinuclear Yb(II) complex with a bridged L ligand. Treatment of EuI(2) with Li(2)L did not afford the analogous [{EuI(DME)(2)}(2)(μ(2)-L)], or another isolable Eu(II) complex, but the hexanuclear heterobimetallic cluster [{Li(DME)(3)}(+)](2)[{(EuI)(2)(μ(2)-I)(2)(μ(3)-L)(2)(Li)(4)}(μ(6)-O)](2-) (2) was isolated as a byproduct in a trace yield. The rational synthesis of cluster 2 could be realized by the reaction of EuI(2) with Li(2)L and H(2)O in a molar ratio of 1:1.5:0.5. The reduction reaction of LLnCl(THF)(2) (Ln = Yb and Eu) with Na/K alloy in THF gave the corresponding Ln(II) complexes [Yb(3)(μ(2)-L)(3)] (3) and [Eu(μ(2)-L)(THF)](2) (4) in good yields. An X-ray crystal structure analysis revealed that each L in complex 3 might adopt a chelating ligand bonding to one Yb atom and each Yb atom coordinates to an additional amidinate group of the other L and acts as a bridging link to assemble a macrocyclic structure. Complex 4 is a dimer in which the two monomers [Eu(μ(2)-L)(THF)] are connected by two μ(2)-amidinate groups from the two L ligands. Complex 3 reacted with CyN═C═NCy and diazabutadienes [2,6-(i)Pr(2)C(6)H(3)N═CRCR═NC(6)H(3)(i)Pr(2)-2,6] (R═H, CH(3)) (DAD) as a one-electron reducing agent to afford the corresponding Yb(III) derivatives: the complex with an oxalamidinate ligand [LYb{(NCy)(2)CC(NCy)(2)}YbL] (5) and the complexes containing a diazabutadiene radical anion [LYb((i)Pr(2)C(6)H(3)NCRCRNC(6)H(3)(i)Pr(2))] (R = H (6), R = CH(3) (7)). Complexes 5-7 were confirmed by an X-ray structure determination.  相似文献   

9.
The early lanthanide benzenefluorothiolates (Ln(SC(6)F(5))(3); Ln = La, Ce, Pr, Nd, Sm, Gd) react with Hg(SC(6)F(5))(2) in DME to form ionic heterometallic compounds with Ln cations and Hg anions. X-ray diffraction analyses of all compounds reveal an isostructural series with the general formula [(DME)(3)Ln(SC(6)F(5))(2)](2)[Hg(2)(SC(6)F(5))(6)]. In the structures, a fluorothiolate ligand has been extracted from the Ln coordination sphere that is saturated with three neutral DME donor ligands and a dative interaction between one ortho fluorine and the Ln. Distances between Ln and F do not vary simply with Ln ionic radius. There are two Ln cations with charge balanced by a Hg(2)(SC(6)F(5))(6) dianion composed of two distinctly nonideal Hg(II) tetrahedra, all connected through a series of pi-pi interactions that link cations with anions in a one-dimensional array and anions to anions in a more complex 2D network.  相似文献   

10.
The selectivity of the 2-thenoyltrifluoroacetone (HTTA) loaded polyurethane (PUR) foam as adsorbent was studied. The influence of various anions on the adsorption indicated that permanganate, oxalate, EDTA, and citrate formed strong complexes with the metal ions and masked completely, while phosphate, thiosulphate, cyanide, ascorbate, tartrate and fluoride hindered the sorption of Fe(III). The sorption of Co(II) is also prohibited in presence of anions like cyanide, ascorbate and tartrate. The sorption of Eu(III) and Tb(III) is greatly affected in the presence of phosphate and fluoride. A group separation of different metals has been proposed on the basis of selectivity of the foam.  相似文献   

11.
We synthesized Eu(III) and Sm(III) complexes with tridentate phosphine oxide ligands, Eu(hfa)(3)(TPPM) and Sm(hfa)(3)(TPPM) (hfa: hexafluoroacetylacetonato, TPPM: tris(diphenylphosphinyl)methane), and we then examined their luminescent properties. In the complexes the Eu(III) and Sm(III) centres were fully surrounded by low-vibrational frequency ligands, which led to relatively high emission quantum yields (Φ(Eu) = 30%, Φ(Sm) = 4.7%). The X-ray single crystal structures of the Eu(hfa)(3)(TPPM) revealed nona-coordinated Eu(III) complexes and C-H/O hydrogen bonding formations between the acidic hydrogen atom of the TPPM ligand and oxygen atoms of solvent molecules. The C-H/O hydrogen bonding slightly affected the coordination structure around the Eu(III) ion. Despite the seemingly small effect on the structural change, because the emission band profile of the (5)D(0)→(7)F(2) transition is sensitive to changes in the coordination environment of the Eu(III) complex, we observed a red shift in the emission spectral line.  相似文献   

12.
The polymeric lanthanide complexes (Ln(mu-CH3OC6H5C4O3)(CH3OC6H5C4O3)2 (H2O)4.xH2O)n [Ln=La (1), Eu (2), Gd (3)], formed from the reaction of aqueous solutions of anisolesquarate and Ln(NO3)3.xH2O, are all structurally similar with only subtle differences between the lanthanum complex and the isomorphous pair of europium and gadolinium analogues. The lanthanum atom in 1 has a square antiprismatic coordination geometry comprising two pendant and two mu-1,3-bridging anisolesquarate groups and four aqua ligands. Complexes 2 and 3 have two independent metal atoms in their asymmetric units compared to one for the lanthanum complex. However, the gross structures of 1-3 are essentially the same. The asymmetric unit of the terbium complex ((CH3OC6H5C4O3)3Tb(H2O)4(mu-CH3OC6H5C4O3)(CH3OC6H5C4O3)2Tb(H2O)5).H2O (4) contains two independent binuclear units which hydrogen bond to form an extended structure very similar to those of 1-3. The ionic polymers ([Ln(mu2-C4O4)(H2O)6][C6H5NHC4O3].4H2O)n [Ln=Eu (5), Gd (6), Tb (7)] result from the incomplete hydrolysis of the anilinosquarate ion during the attempted synthesis of Eu(III), Gd(III), and Tb(III) anilinosquarate complexes. However, complete hydrolysis of the substituent is accomplished by La(III) ions, and the neutral polymer (La2(mu2-C4O4)2(mu3-C4O4)(H2O)11.2H2O)n (8) is formed. In complexes 5-7, the central lanthanide atom has a square antiprismatic geometry, being bonded to two mu-1,2-bridging squarate and six aqua ligands. Two anilinosquarate counteranions participate in second-sphere coordination via direct hydrogen bonding to aqua ligands on each metal center. These counteranions, and the included waters of crystallization, serve to link neighboring cationic polymer chains via an extensive array of O-H...O hydrogen bonds to form a 3-dimensional network. The polymeric lanthanum complex 8 contains two different metal environments, each having distorted monocapped square antiprismatic geometry. For one lanthanum atom the coordination polyhedron comprises five aqua and four squarate ligands, while for the other the polyhedron consists of six aqua and three squarate ligands; in each case one of the aqua ligands occupies the capping position. The squarate ligand exhibits two coordination modes in 8 (mu-1,2- and mu-1,3-bridging), and neighboring polymer chains are cross-linked by hydrogen bonds to form a 3-dimensional network.  相似文献   

13.
The homoleptic rare-earth pyrazolate complexes [Sc(tBu2pz)3], [Ln2(tBu2pz)6] (Ln = La, Nd, Sm, Lu), [Eu4(tBu2pz)8] and the mixed oxidation state species [Yb2(tBu2pz)5] (tBu2pz = 3,5-di-tert-butylpyrazolate) have been prepared by a simple reaction between the corresponding rare-earth metal and 3,5-di-tert-butylpyrazole, in the presence of mercury, at elevated temperatures. In addition, [Yb2(tBu2pz)6] was prepared by redox transmetallation/ligand exchange between ytterbium, diphenylmercury(II) and tBu2pzH in toluene, whilst the same reactants in toluene under different conditions or in diethyl ether gave [Yb2(tBu2pz)5]. The complexes of the trivalent lanthanoids display dimeric structures [Ln2(tBu2pz)6] (Ln = La, Nd, Yb, Lu) with chelating eta2-terminal and eta2:eta2-bridging pyrazolate coordination. The considerably smaller Sc3+ ion forms monomeric [Sc(tBu2pz)3] of putative D3h molecular symmetry, with pyrazolate ligands solely eta2-bonded. [Eu4(tBu2pz)8] is a structurally remarkable tetranuclear EuII complex with two types of europium centres in a linear array. The outer two are bonded to one terminal and two bridging pyrazolates, and the inner two are coordinated by four bridging ligands. Unprecedented mu-eta5:eta2 pyrazolate ligation is observed, with each outer Eu2+ sandwiched between two eta5-bonded pyrazolate groups, which are also eta2-linked to an inner Eu2+. The two inner Eu2+ ions are linked together by two equally occupied components of each of two symmetry related, disordered pyrazolate groups with one component eta4:eta2 bridging and one eta3:eta2 bridging. [La2(tBu2pz)6] has also been shown to be a Tishchenko reaction catalyst with several organic substrates.  相似文献   

14.
By reaction of [NBu(4)](2)[Pt(2)(&mgr;-C(6)F(5))(2)(C(6)F(5))(4)] with 1,8-naphthyridine (napy), [NBu(4)][Pt(C(6)F(5))(3)(napy)] (1) is obtained. This compound reacts with cis-[Pt(C(6)F(5))(2)(THF)(2)] to give the dinuclear derivative [NBu(4)][Pt(2)(&mgr;-napy)(&mgr;-C(6)F(5))(C(6)F(5))(4)] (2). The reaction of several HX species with 2 results in the substitution of the bridging C(6)F(5) by other ligands (X) such as OH (3), Cl (4), Br (5), I (6), and SPh (7), maintaining in all cases the naphthyridine bridging ligand. The structure of 3 was determined by single-crystal X-ray diffraction. The compound crystallizes in the monoclinic system, space group P2(1)/n, with a = 12.022(2) ?, b = 16.677(3) ?, c = 27.154(5) ?, beta = 98.58(3) degrees, V = 5383.2(16) ?(3), and Z = 4. The structure was refined to residuals of R = 0.0488 and R(w) = 0.0547. The complex consists of two square-planar platinum(II) fragments sharing a naphthyridine and OH bridging ligands, which are in cis positions. The short Pt-Pt distance [3.008(1) ?] seems to be a consequence of the bridging ligands.  相似文献   

15.
The first examples of lanthanide(III) organoarsonates, Ln(L(1))(H(2)O)(3) (Ln = La (1), H(3)L(1) = 4-hydroxy-3-nitrophenylarsonic acid), Ln(L(1))(H(2)O)(2) (Ln = Nd (2), Gd (3)), and mixed-ligand lanthanide(III) organoarsonates, Ln(2)(HL(1))(2)(C(2)O(4))(H(2)O)(2) (Ln = Nd (4), Sm (5), Eu (6)), were hydrothermally synthesized and structurally characterized. Compounds 1-3 feature a corrugated lanthanide arsonate layer, in which 1D lanthanide arsonate inorganic chains are further interconnected via bridging L(1)(3-) ligands. Compounds 4-6 exhibit a complicated 3D network. The interconnection of the lanthanide(III) ions by the bridging arsonate ligand leads to the formation of a novel 3D framework with long narrow 1D tunnels along the a-axis, with the oxalate anions are located at the above tunnels and bridging with lanthanide(III) ions. Compounds 2 and 4 exhibit the characteristic emission bands of the Nd(III) ion, whereas compound 6 displays the characteristic emission bands of the Eu(III) ion. The magnetic properties of compounds 3-6 were also investigated.  相似文献   

16.
The new europium fluoride carbodiimide Eu(4)F(5)(CN(2))(2) was synthesized by solid state reaction from mixtures of EuF(3) and Li(2)(CN(2)) at 700 °C. The crystal structure as refined by single crystal X-ray diffraction (P ?42(1)c, no. 114, a = 16.053(1) ?, c = 6.5150(6) ?, Z = 8) reveals three crystallographically distinct [N═C═N](2-) ions in the structure of mixed-valent Eu(4)F(5)(CN(2))(2). The presence of one Eu(3+) and three Eu(2+) per formula unit Eu(4)F(5)(CN(2))(2) is confirmed by magnetic measurements and (151)Eu-Mo?ssbauer spectroscopy. The arrangement of Eu ions and gravity centers of [NCN](2-) ions in the structure of Eu(4)F(5)(CN(2))(2) follow the motif formed by atoms in the CuAl(2)-type structure. A possible high-symmetry structure of Eu(4)F(5)(CN(2))(2) is discussed on the basis of a group-subgroup scheme.  相似文献   

17.
Reaction of palladium acetate with 2 equiv of sodium phenoxide in the presence of a chelate diamine ligand affords the complexes [Pd(OPh)(2)(N approximately N)] (N approximately N = bpy (1), tmeda (2), teeda (3), dpe (4), dmap (5)). These yellow to orange bis(phenoxo)palladium(II) complexes are thermally stable at room temperature in the solid state as well as in solution. Addition of an excess of pentafluorophenol to 1, 2, 4, and 5 affords crystalline complexes [Pd(OC(6)F(5))(2)(N approximately N)] (N approximately N = bpy (6), tmeda (7), dpe (8), dmap (9)). Crystals of 1 and 6 have been subjected to X-ray diffraction studies. Crystals of 1 are orthorhombic, space group P2(1)2(1)2(1) (no. 19), with a = 6.7655(6) ?, b = 16.0585(10) ?, c = 16.7275(13) ?, and Z = 4. Crystals of 6 are triclinic, space group P&onemacr; (no. 2), with a = 7.567(4) ?, b = 12.708(3) ?, c = 12.912(5) ?, alpha = 61.51(3) degrees, beta = 74.74(4) degrees, gamma = 88.78(4) degrees, and Z = 2. The molecular structures of 1 and 6 show them to be square-planar complexes, and the main structural difference between these complexes is the orientation of the aromatic rings. In 6 the OC(6)F(5) ligands are almost parallel in a face-to-face orientation (pi-pi stacking interactions), whereas in 1 the OC(6)H(5) units are skewed away from each other. An unexpected "mixed" alkoxo(aryloxo) complex [Pd(OCH(CF(3))(2))(OPh)(bpy)].HOPh (10) is formed when 1 is reacted with 1,1,1,3,3,3-hexafluoro-2-propanol. The molecular structure of 10 shows O-H.O hydrogen bonding (O.O = 2.642(8) ?) between the hydroxyl hydrogen of phenol and the oxygen atom of the phenoxide ligand as well as an additional C-H.O contact (C.O) = 2.95(1) ?), which can be regarded as the initial stage of a base-assisted beta-hydrogen elimination. Crystals of 10 are monoclinic, space group P2(1)/c, with a = 8.3241(14) ?, b = 11.0316(17) ?, c = 26.376(3) ?, alpha = 93.01(1) degrees, Z = 4. Spectroscopic data of complexes 1-10 indicate that the oxygen atom of the aryloxide or alkoxide ligand is extremely electron-rich, leading to high polarization of the palladium-to-oxygen bond. The bis(phenoxide) complexes 1, 2, and 4 associate with two molecules of phenol through O-H.O hydrogen bonds to form adducts [Pd(OPh)(2)(N approximately N)].2HOPh (N approximately N = bpy (11), tmeda (12), dpe (13)). The palladium complexes 6-9 with OC(6)F(5) groups show no tendency to form adducts with alcohols.  相似文献   

18.
Abstract

The first Ni(II) compounds with aminophenol ligands were synthesized by reaction of 2-diethylaminomethylphenol and 2-diethylaminomethyl-4-methylphenol (N ~ OH) with dehydrated NiCl2 in ethanol. They were characterized as tran-square planar Ni(N ~ O)2 complexes by NMR and IR spectroscopies, mass spectrometry, elemental analysis and X-ray structure determination. When the ligand was reacted with Eu(NO3)3, the new dimeric complex [Eu(NO3)3(HN ~ O)2]2 was isolated. Elemental analysis, IR, magnetic moment and X-ray diffraction indicated that in this case formally neutral aminophenol ligands, in their zwitterionic form, are attached to the metal center through the phenolato oxygen and act either as bridging or as terminal groups. Their protonated amino substituents are involved in strong N—H—O hydrogen bridging. The metal shows nine-coordination, the coordination sphere of each europium being completed by three NO3 groups.  相似文献   

19.
Electrochemical kinetic parameters of the V(III)/V(II) and Eu(III)/Eu(II) couples in sulfuric, perchloric, hydrochloric, and hydrobromic acids were measured by potentiostatic and double pulse galvanostatic methods. The 2 potentials in these solutions were calculated from electrocapillary measurements and the effect of the 2 potentials on the electrode kinetics was discussed. The kinetic data after the Frumkin correction was applied show a very good agreement in H2SO4, HClO4, and HCl solutions, if we assume that the non-complexed ion, which is partially supplied by the dissociation of complex ions, participates in the electrode reaction. The corrected rate constants in the bromide solution were about ten times larger than those to be expected from the 2 potentials in the case of the V(III)/V(II) couple and a small acceleration effect was observed for the Eu(III)/Eu(II) couple. The greater reaction rate in the bromide solution is explained by the bridging effect.  相似文献   

20.
<正> The crystal structure of [Eu2(Met)3(Gly)(H2O)2](ClO4)6(Met=CH3-S(CH2)2CHNH2COOH, Gly=NH2CH2COOH) belongs to monoclinic system with space group P21/n.The final R is 0.060. The Met and Gly are bonded as bidentate bridging ligands to Eu(III) atoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号