首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Diffusion with interruptions (arising from localized oscillations, or traps, or mixing between jump diffusion and fluid-like diffusion, etc.) is a very general phenomenon. Its manifestations range from superionic conductance to the behaviour of hydrogen in metals. Based on a continuous-time random walk approach, we present a comprehensive two-state random walk model for the diffusion of a particle on a lattice, incorporating arbitrary holding-time distributions for both localized residence at the sites and inter-site flights, and also the correct first-waiting-time distributions. A synthesis is thus achieved of the two extremes of jump diffusion (zero flight time) and fluid-like diffusion (zero residence time). Various earlier models emerge as special cases of our theory. Among the noteworthy results obtained are: closed-form solutions (ind dimensions, and with arbitrary directional bias) for temporally uncorrelated jump diffusion and for the ‘fluid diffusion’ counterpart; a compact, general formula for the mean square displacement; the effects of a continuous spectrum of time scales in the holding-time distributions, etc. The dynamic mobility and the structure factor for ‘oscillatory diffusion’ are taken up in part 2.  相似文献   

2.
The solution of the one-dimensional persistent, biased random walk is found. Its finite differences equation is derived and shown to be satisfied by the said solution.  相似文献   

3.
This paper considers the asymptotic distribution for the horizontal displacement of a random walk in a medium represented by a two-dimensional lattice, whose transitions are to nearest-neighbor sites, are symmetric in the horizontal and vertical directions, and depend on the column currently occupied. On either side of a change-point in the medium, the transition probabilities are assumed to obey an asymptotic density condition. The displacement, when suitably normalized, converges to a diffusion process of oscillating Brownian motion type. Various special cases are discussed.  相似文献   

4.
The transition probability for a carrier hopping between randomly placed sites is determined for a system in thermodynamic equilibrium. The effect of the first waiting time is included and the result is shown to be consistent with the theory of statistical thermodynamics. Furthermore, a comparison is made with the master equation approach, which is shown to be exact when the waiting times are exponentially distributed. The application to ac conductivity is discussed.  相似文献   

5.
A classical result of probability theory states that under suitable space and time renormalization, a random walk converges to Brownian motion. We prove an analogous result in the case of nonhomogeneous random walk on onedimensional lattice. Under suitable conditions on the nonhomogeneous medium, we prove convergence to Brownian motion and explicitly compute the diffusion coefficient. The proofs are based on the study of the spectrum of random matrices of increasing dimension.  相似文献   

6.
A stochastic model for the idealized locomotion of cells is studied. The cell is assumed to cover a polygonal line in n , the times between turns are exponentially distributed and independent of the directions, and the density of thenth directione does not depend on the (n–1)th directione. The resulting Markov process (X(t), D(t)) for position and direction of the motion at timet is studied by using the integrodifferential equation for the transition function. For example, the joint distribution of (X(t), D(t)) is derived in closed form ifn=2 orn=3 and all chosen directions (including the initial one) are uniformly distributed. For higher dimensions the combined Fourier-Laplace transform ofX(t) is given. The case of a fixed initial direction is also considered.  相似文献   

7.
We investigate the trapping of a random walker in fractal structures (Sierpinski gaskets) with randomly distributed traps. The survival probability is determined from the number of distinct sites visited in the trap-free fractals. We show that the short-time behavior and the long-time tails of the survival probability are governed by the spectral dimensiond. We interpolate between these two limits by introducing a scaling law. An extension of the theory, which includes a continuous-time random walk on fractals, is discussed as well as the case of direct trapping. The latter case is shown to be governed by the fractal dimensiond.  相似文献   

8.
林方  包景东 《中国物理 B》2011,20(4):40502-040502
A generalized continuous time random walk model which is dependent on environmental damping is proposed in which the two key parameters of the usual random walk theory: the jumping distance and the waiting time, are replaced by two new ones: the pulse velocity and the flight time. The anomalous diffusion of a free particle which is characterized by the asymptotical mean square displacement <x2(t)>~tα is realized numerically and analysed theoretically, where the value of the power index α is in a region of 0 < α < 2. Particularly, the damping leads to a sub-diffusion when the impact velocities are drawn from a Gaussian density function and the super-diffusive effect is related to statistical extremes, which are called rare-though-dominant events.  相似文献   

9.
A calculation is made of the exact probability distribution of the two-dimensional displacement of a particle at timet that starts at the origin, moves in straight-line paths at constant speed, and changes its direction after exponentially distributed time intervals, where the lengths of the straight-line paths and the turn angles are independent, the angles being uniformly distributed. This random walk is the simplest model for the locomotion of microorganisms on surfaces. Its weak convergence to a Wiener process is also shown.  相似文献   

10.
Continuing our study of interrupted diffusion, we consider the problem of a particle executing a random walk interspersed with localized oscillations during its halts (e.g., at lattice sites). Earlier approaches proceedvia approximation schemes for the solution of the Fokker-Planck equation for diffusion in a periodic potential. In contrast, we visualize a two-state random walk in velocity space with the particle alternating between a state of flight and one of localized oscillation. Using simple, physically plausible inputs for the primary quantities characterising the random walk, we employ the powerful continuous-time random walk formalism to derive convenient and tractable closed-form expressions for all the objects of interest: the velocity autocorrelation, generalized diffusion constant, dynamic mobility, mean square displacement, dynamic structure factor (in the Gaussian approximation), etc. The interplay of the three characteristic times in the problem (the mean residence and flight times, and the period of the ‘local mode’) is elucidated. The emergence of a number of striking features of oscillatory diffusion (e.g., the local mode peak in the dynamic mobility and structure factor, and the transition between the oscillatory and diffusive regimes) is demonstrated.  相似文献   

11.
Asymptotic solutions for the Montroll-Weiss continuous-time random walk that are appropriate to the conduction of carriers through a resistive medium are utilized to show that, when carrier drift occurs by virtue of an applied electric field, a 1/f type of spectral density may be exhibited in the current noise. When the applied field is removed the spectral density is given by Nyquist's theorem.  相似文献   

12.
Applying scaling and universality arguments, the long-time behavior of the probability distribution for a random walk in a one-dimensional random medium satisfying Sinai's constraint is obtained analytically. The convergence to this asymptotic limit and the fluctuations of this distribution are evaluated by solving numerically the stochastic equations for this walk.  相似文献   

13.
We solve analytically the problem of a biased random walk on a finite chain of ‘sites’ (1,2,…,N) in discrete time, with ‘myopic boundary conditions’—a walker at 1 (orN) at timen moves to 2 (orN − 1) with probability one at time (n + 1). The Markov chain has period two; there is no unique stationary distribution, and the moments of the displacement of the walker oscillate about certain mean values asn → ∞, with amplitudes proportional to 1/N. In the continuous-time limit, the oscillating behaviour of the probability distribution disappears, but the stationary distribution is depleted at the terminal sites owing to the boundary conditions. In the limit of continuous space as well, the problem becomes identical to that of diffusion on a line segment with the standard reflecting boundary conditions. The first passage time problem is also solved, and the differences between the walks with myopic and reflecting boundaries are brought out.  相似文献   

14.
We derive an integro-differential equation for the joint probability density function in phase space associated with the continuous-time random walk, with generic waiting time probability density function and external force. This equation permits us to investigate whole diffusion processes covering initial-, intermediate-, and long-time ranges, which can distinguish the evolution details for systems having the same behavior in the long-time limit with different initial- and intermediate-time behaviors. Moreover, we obtained analytic solutions for probability density functions both in velocity and phase spaces, and interesting dynamic behaviors are discovered.  相似文献   

15.
The kink of cellular automaton rule 18 performs a random walk   总被引:1,自引:0,他引:1  
We give an exact characterization of the movement of a single kink in the elementary cellular automaton Rule 18. It is a random walk with independent increments as well as independent delay times. Its statistical parameters are computed to confirm the earlier simulation results by Grassberger.  相似文献   

16.
林方  包景东 《中国物理 B》2008,17(2):696-702
基于连续时间无规行走(CTRW)理论,数值研究了布朗粒子的欠扩散、正常扩散和超扩散三种扩散行为.解决了CTRW模型的跳跃步长和等待时间分布函数的可实现化问题,对Metropolis抽样方法进行了改进以适用于周期势.探讨了布朗马达依靠闪烁棘轮和摇摆棘轮整流反常扩散所获得的定向速度,结果显示,闪烁布朗马达定向流极大值出现在超扩散条件下;摇摆布朗马达定向流最大值出现在弹道扩散条件下.  相似文献   

17.
林方  包景东 《物理学报》2008,57(2):696-702
基于连续时间无规行走(CTRW)理论,数值研究了布朗粒子的欠扩散、正常扩散和超扩散三种扩散行为.解决了CTRW模型的跳跃步长和等待时间分布函数的可实现化问题,对Metropolis抽样方法进行了改进以适用于周期势.探讨了布朗马达依靠闪烁棘轮和摇摆棘轮整流反常扩散所获得的定向速度,结果显示,闪烁布朗马达定向流极大值出现在超扩散条件下;摇摆布朗马达定向流最大值出现在弹道扩散条件下. 关键词: 无规行走 反常扩散 Metropolis抽样 棘轮势  相似文献   

18.
李克平 《中国物理 B》2010,19(3):30519-030519
According to random walk, in this paper, we propose a new traffic model for scheduling trains on a railway network. In the proposed method, using some iteration rules for walkers, the departure and the arrival times of trains at each station are determined. We test the proposed method on an assumed railway network. The numerical simulations and the analytical results demonstrate that the proposed method provides an effective tool for scheduling trains. Some characteristic behaviours of train movement can be reproduced, such as train delay.  相似文献   

19.
Conolly et al. [Math. Scientist 22 (1997) 83-91] have obtained the transient distribution for a random walk moving on the integers -∞<k<∞ of the real line. Their analysis is based on a generating function technique. In this paper, an alternative technique is used to derive elegant explicit expressions for the transient state distribution of an infinite random walk having “chemical” rule and starting initially at any arbitrary integer position (say i). As a special case of our result, Conolly et al.'s (1997) solution is easily obtained. Moreover, the transient solution of the infinite symmetric continuous random walk is also presented. Finally, numerical values testing the quality of our analytical results are illustrated.  相似文献   

20.
Quantum walk is a very useful tool for building quantum algorithms due to the faster spreading of probability distributions as compared to a classical random walk. Comparing the spreading of the probability distributions of a quantum walk with that of a mnemonic classical random walk on a one-dimensional infinite chain, we find that the classical random walk could have a faster spreading than that of the quantum walk conditioned on a finite number of walking steps. Quantum walk surpasses classical random walk with memory in spreading speed when the number of steps is large enough. However, in such a situation, quantum walk would seriously suffer from decoherence. Therefore, classical walk with memory may have some advantages in practical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号