首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX-2) have been known to be involved in various pathophysiological processes such as inflammation. This study was performed to determine the regulatory function of superoxide dismutase (SOD) on the LPS-induced expression of iNOS, and COX-2 in RAW 264.7 cells. When a cell-permeable SOD, Tat-SOD, was added to the culture medium of RAW 264.7 cells, it rapidly entered the cells in a dose-dependent manner. Treatment of RAW 264.7 cells with Tat-SOD led to decrease in LPS-induced ROS generation. Pretreatment with Tat-SOD significantly inhibited LPS-induced expression of iNOS and NO production but had no effect on the expression of COX-2 and PGE2 production in RAW 264.7 cells. Tat-SOD inhibited LPS-induced NF-κB DNA binding activity, IκBα degradation and activation of MAP kinases. These data suggest that SOD differentially regulate expression of iNOS and COX-2 in LPS-stimulated RAW 264.7 cells.  相似文献   

2.
beta-Carotene has shown antioxidant and anti-inflammatory activities; however, its molecular mechanism has not been clearly defined. We examined in vitro and in vivo regulatory function of beta-carotene on the production of nitric oxide (NO) and PGE(2) as well as expression of inducible NO synthase (iNOS), cyclooxygenase-2, TNF-alpha, and IL-1beta. beta-Carotene inhibited the expression and production of these inflammatory mediators in both LPS-stimulated RAW264.7 cells and primary macrophages in a dose-dependent fashion as well as in LPS-administrated mice. Furthermore, this compound suppressed NF-kappaB activation and iNOS promoter activity in RAW264.7 cells stimulated with LPS. beta-Carotene blocked nuclear translocation of NF-kappaB p65 subunit, which correlated with its inhibitory effect on IkappaBalpha phosphorylation and degradation. This compound directly blocked the intracellular accumulation of reactive oxygen species in RAW264.7 cells stimulated with LPS as both the NADPH oxidase inhibitor diphenylene iodonium and antioxidant pyrrolidine dithiocarbamate did. The inhibition of NADPH oxidase also inhibited NO production, iNOS expression, and iNOS promoter activity. These results suggest that beta-carotene possesses anti-inflammatory activity by functioning as a potential inhibitor for redox-based NF-kappaB activation, probably due to its antioxidant activity.  相似文献   

3.
4.
5.
In this study, we realized the continual and long-term electrochemical detection of NO production by stimulated macrophages using modified porphyrinic microsensor. The NO release from RAW 264.7 cells stimulated by lipopolysaccharide started 5 h after the lipopolysaccharide administration. After reaching its maximum at the sixth hour, the stable level of NO production was observed between the seventh and 12th hour of the experiment. This phase was followed by a gradual decline in NO production. A close correlation between the NO signal detected with microelectrode and nitrite accumulation, which had been determined in supernatants removed from stimulated cells, was observed. This finding was utilized for the calibration of the electrochemical experiment. The presence of iNOS enzyme, which constitutes a main requirement for NO production by stimulated macrophages, was confirmed by Western blot analysis of iNOS protein expression at key time points of the corresponding electrochemical experiment. The capability of our microsensor to instantaneously monitor the changes in the NO production by stimulated RAW 264.7 cells was demonstrated by the immediate decrease in the signal due to NO as a response to the addition of iNOS inhibitor into the cell culture medium. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

6.
7.
8.
9.
Polygonum odoratum var. Pakphai has been used in traditional Thai medicine for the treatment of flatulence and constipation and to relieve the inflammation caused by insect bites. Quercetin (Q), which is abundant in plant-based foods, has been found to exert anti-inflammatory properties. This study evaluated the anti-inflammatory activity of P. odoratum ethanolic extract in RAW264.7 macrophage cells. Leaves were extracted with 50% ethanol, phenolics and flavonoids were then analyzed using UHPLC-QTOF-MS and HPLC-DAD. RAW264.7 cells were induced with lipopolysaccharides (LPSs). They were then treated with the extract and prostaglandin E2 (PGE2), and interleukin-6 (IL-6) and tumor necrotic factor-alpha (TNF-α) concentrations were determined. Levels of cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), IL-6 and TNF-α mRNAs were analyzed using qRT-PCR. Chemical analysis demonstrated that the extract was abundant with Q while also containing catechin, gallic acid, epicatechin gallate and coumarin. The extract increased the viability of RAW264.7 cells and dose-dependently decreased nitric oxide production, PGE2, IL-6 and TNF-α levels in the medium from the LPS-induced RAW264.7 cell culture. Consistently, COX-2, iNOS, IL-6 and TNF-α mRNA levels were decreased in a concentration-dependent manner (p < 0.05). Thus, the quercetin-rich ethanolic extract derived from P. odoratum var Pakphai leaves can exert anti-inflammatory activity in LPS-induced RAW264.7 cells through a reduction of the pro-inflammatory mediator response.  相似文献   

10.
Abstract

Naucleoffieine H, a natural indole alkaloid, was isolated and identified from Nauclea officinalis Pierrc ex Pitard which is a traditional Chinese medicine used for the treatment of various diseases, such as cold, fever, bronchitis, pneumonia, acute tonsillitis, etc. In the present study, the effect of naucleoffieine H on the anti-inflammatory activities was investigated in LPS-induced RAW 264.7 macrophages. The results showed that naucleoffieine H significantly inhibited the release of nitric oxide (the level of nitrite as a stable biomarker of NO production) and tumor necrosis factor-α (TNF-α). Interesting, naucleoffieine H down-regulated the overexpression of inflammatory protein induced nitric oxide synthase (iNOS), but no effect on the expression cyclooxygenase-2 (COX-2) protein. In addition, this bioactive alkaloid suppressed enzymatic activity of iNOS activated by LPS. The above results indicated that naucleoffieine H suppress NO and TNF-α overproduction via block the iNOS pathway in LPS-induced RAW 264.7 macrophages.  相似文献   

11.
The anti-inflammatory and anticancer activities of a methanol extract of the rhizome of Cnidium officinale were investigated. Four compounds, namely falcarindiol (1), 6-hydroxy-7-methoxy-dihydroligustilide (2), ligustilidiol (3), and senkyunolide H (4) were isolated from the extract of the rhizome of Cnidium officinale and their structures were elucidated by analysis of their spectroscopic data and by comparison with previously reported data. These compounds showed anti-inflammatory activities, measured as inhibition of nitric oxide (NO) release in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage cells, with IC(50) values of 4.31 ± 5.22, 152.95 ± 4.23, 72.78 ± 5.13, and 173.42 ± 3.22 μM, respectively. They also inhibited inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) mRNA expression induced by LPS. Among these compounds, falcarindiol (1) was found to have anti-proliferative effect against MCF-7 human breast cancer cells by induction of a G(0)/G(1) cell cycle block of the cells, with an IC(50) value of 35.67 μM. Typical apoptotic effects were observed by phase contrast microscopy and were also exhibited in fluorescence microscopy with Hoechst 33342 staining. In addition, falcarindiol induced apoptosis through strongly increased mRNA expression of Bax and p53, and slightly reduced Bcl-2 mRNA levels in a dose dependent manner. This study suggested that C. officinale extract and its components would be valuable candidates in therapeutic applications for anti-inflammatory and anti-cancer agents.  相似文献   

12.
3T3-L1 adipocytes express the B-cell-activating factor (BAFF) and three different BAFF receptors (BAFF-Rs). Furthermore, BAFF expression is regulated by inflammatory modulators, such as tumor necrosis factor-α and rosiglitazone. Here we investigated the function of BAFF in 3T3-L1 adipocytes and RAW 264.7 macrophages. We examined adipokine expression in 3T3-L1 adipocytes treated with 10 ng ml−1 BAFF. We also examined inflammatory molecule expression in RAW 264.7 macrophages treated with 10 or 100 ng ml−1 BAFF. We examined BAFF expression in the coculture of 3T3-L1 adipocytes and RAW 264.7 macrophages, as well as in white adipose tissue (WAT) of diet-induced obese (DIO) mice. We found that BAFF decreases leptin and adiponectin expression, but increases the expression of proinflammatory adipokines monocyte chemotactic protein-1, interleukin-6 (IL-6), cyclooxygenase-2 (COX-2) and haptoglobin. Coculturing the two cell types resulted in increased BAFF mRNA and protein expression, as well as modulation of BAFF-R mRNA expression in both cell types. These data indicate that BAFF might mediate adipocyte and macrophage interaction. When RAW 264.7 macrophages were treated with BAFF, BAFF-R expression was modulated as in coculture, and nitric oxide synthase and IL-6 expression increased. BAFF expression also increased in WAT of DIO mice. We propose that BAFF can regulate adipokine expression and possibly mediate adipocyte and macrophage interaction.  相似文献   

13.
14.
Rutin (R) and quercetin (Q) are two widespread dietary flavonoids. Previous studies regarding the plasma cholesterol-lowering activity of R and Q generated inconsistent results. The present study was therefore carried out to investigate the effects of R and Q on cholesterol metabolism in both HepG2 cells and hypercholesterolemia hamsters. Results from HepG2 cell experiments demonstrate that both R and Q decreased cholesterol at doses of 5 and 10 µM. R and Q up-regulated both the mRNA and protein expression of sterol regulatory element binding protein 2 (SREBP2), low-density lipoprotein receptor (LDLR), and liver X receptor alpha (LXRα). The immunofluorescence study revealed that R and Q increased the LDLR expression, while only Q improved LDL-C uptake in HepG2 cells. Results from hypercholesterolemia hamsters fed diets containing R (5.5 g/kg diet) and Q (2.5 g/kg diet) for 8 weeks demonstrate that both R and Q had no effect on plasma total cholesterol. In the liver, only Q reduced cholesterol significantly. The discrepancy between the in vitro and in vivo studies was probably due to a poor bioavailability of flavonoids in the intestine. It was therefore concluded that R and Q were effective in reducing cholesterol in HepG2 cells in vitro, whereas in vivo, the oral administration of the two flavonoids had little effect on plasma cholesterol in hamsters.  相似文献   

15.
One new coumarin, 3,5-dihydroxy-7-O-α-L-rhamno pyranosyl-2H-chromen-2-one (1), was isolated from the whole plant of Sarcandra glabra. The structure was elucidated by spectroscopic methods. Our results indicated that 1 significantly inhibit nitric oxide (NO) production in LPS-induced RAW264.7 macrophages. RT-PCR analysis indicated it inhibited iNOS mRNA expression. In addition, Western blot analysis showed that 1 attenuated LPS-induced synthesis of iNOS protein in the macrophages. These results suggest that 1 could be potential anti-inflammatory agent by down-regulating iNOS expression.  相似文献   

16.
A variety of benzylidenethiazole analogs have been demonstrated to inhibit 5-lipoxygenase (5-LOX). Here we report the anti-atherogenic potential of 5-(4-hydroxy- 2,3,5-trimethylbenzylidene) thiazolidin-2,4-dione (HMB-TZD), a benzylidenethiazole analog, and its potential mechanism of action in LDL receptor-deficient (Ldlr-/-) mice. HMB-TZD Treatment reduced leukotriene B4 (LTB4) production significantly in RAW264.7 macrophages and SVEC4-10 endothelial cells. Macrophages or endothelial cells pre-incubated with HMB-TZD for 2 h and then stimulated with lipopolysaccharide or tumor necrosis factor-alpha (TNF-α) displayed reduced cytokine production. Also, HMB-TZD reduced cell migration and adhesion in accordance with decreased proinflammatory molecule production in vitro and ex vivo. HMB-TZD treatment of 8-week-old male Ldlr-/- mice resulted in significantly reduced atherosclerotic lesions without a change to plasma lipid profiles. Moreover, aortic expression of pro-atherogenic molecules involved in the recruitment of monocytes to the aortic wall, including TNF-α , MCP-1, and VCAM-1, was downregulated. HMB-TZD also reduced macrophage infiltration into atherosclerotic lesions. In conclusion, HMB-TZD ameliorates atherosclerotic lesion formation possibly by reducing the expression of proinflammatory molecules and monocyte/macrophage recruitment to the lesion. These results suggest that HMB-TZD, and benzylidenethiazole analogs in general, may have therapeutic potential as treatments for atherosclerosis.  相似文献   

17.
This study was performed to investigate the effect of ethanol extract from Saururus chinensis (Lour.) Baill on liver function, plasma lipid composition and antioxidant system with high-fat diet for 4 weeks. Rats were divided into the following five groups; untreated control group (normal), treated with 0.5% SE (normal + 0.5% SE), high-fat group (high-fat), high-fat group treated with 0.1% SE (high-fat + 0.1% SE), or 0.5% SE (high-fat + 0.5% SE). Weight gains showed a tendency to decrease in rat with high-fat + SE. Plasma total cholesterol showed a tendency to decrease with ethanol extract from S. chinensis (Lour.) Baill. LDL-cholesterol contents were lower in ethanol extract group than that of control group. Aspartate amino transferase and alanine amino transferase activities were increased by high-fat diet, and were decreased by 0.5% SE. Lipid peroxide level showed a tendency to increase in high-fat diet group than that of normal group. In ethanol extract from S. chinensis (Lour.) Baill groups, lipid peroxide level decreased significantly and SOD activity was also decreased progressively. These results demonstrated that the ethanol extract of S. chinensis (Lour.) Baill lowered serum cholesterol levels, tissue lipid contents and accumulation of cholesterol in the rat.  相似文献   

18.
Drug repurposing is a simple concept with a long history, and is a paradigm shift that can significantly reduce the costs and accelerate the process of bringing a new small-molecule drug into clinical practice. We attempted to uncover a new application of spiramycin, an old medication that was classically prescribed for toxoplasmosis and various other soft-tissue infections; specifically, we initiated a study on the anti-inflammatory capacity of spiramycin. For this purpose, we used murine macrophage RAW 264.7 as a model for this experiment and investigated the anti-inflammatory effects of spiramycin by inhibiting the production of pro-inflammatory mediators and cytokines. In the present study, we demonstrated that spiramycin significantly decreased nitric oxide (NO), interleukin (IL)-1β, and IL-6 levels in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. Spiramycin also inhibited the expression of NO synthase (iNOS), potentially explaining the spiramycin-induced decrease in NO production. In addition, spiramycin inhibited the phosphorylation of mitogen-activated protein kinases (MAPKs); extracellular signal-regulated kinase (ERK) and c-Jun N terminal kinase (JNK) as well as the inactivation and subsequent nuclear translocation of nuclear factor κB (NF-κB). This indicated that spiramycin attenuates macrophages’ secretion of IL-6, IL-1β, and NO, inducing iNOS expression via the inhibition of the NF-κB and MAPK signaling pathways. Finally, we tested the potential application of spiramycin as a topical material by human skin primary irritation tests. It was performed on the normal skin (upper back) of 31 volunteers to determine whether 100 μM and μM of spiramycin had irritation or sensitization potential. In these assays, spiramycin did not induce any adverse reactions. In conclusion, our results demonstrate that spiramycin can effectively attenuate the activation of macrophages, suggesting that spiramycin could be a potential candidate for drug repositioning as a topical anti-inflammatory agent.  相似文献   

19.
In comparison with cationic liposomes, catanionic vesicles possess more attractive properties such as stability and lower cost, and these characteristics may make them suitable as a non-viral vehicle and for other biomedical applications such as vaccine adjuvants. However, very little is known about their possible cytotoxic mechanisms in cellular system. Also, this information is vital for the future development of safe biomedical systems. In the current study, the cytotoxic effect of catanionic vesicles, consisting of anionic surfactant (SDS), cationic surfactant (HTMAB), and cholesterol, in cultured RAW 264.7 murine macrophage-like cells was determined. The treatment of catanionic vesicles produced a dose-dependent effect on macrophage cells. RAW 264.7 cells exposed to catanionic vesicles exhibited morphological features of apoptosis such as chromatin condensation. Typical apoptotic ladders were observed in DNA extracted from RAW 264.7 cells treated by catanionic vesicles. Analysis from flow cytometry demonstrated an increase of hypodiploid DNA population (sub-G1) and a simultaneous decrease of diploid DNA content, indicating that DNA cleavage occurred after exposure of the cells with catanionic vesicles. In addition, it was shown that pretreatment of RAW 264.7 cells with the general caspase inhibitor (zVAD-fmk) did not prevent apoptosis induced by catanionic vesicles, suggesting that apoptosis in macrophage cells followed a caspase-independent pathway induced by catanionic vesicles. These data provide novel insight into the effect of catanionic vesicles on the mechanisms of cell death induced by catanionic vesicles.  相似文献   

20.
The methylene chloride-methanol (1?:?1) extract from the air-dried aerial parts of wild Pulicaria undulata collected in North Sinia, Egypt, showed inhibitory effects on lipopolysaccharide (LPS)-induced production of nitric oxide (NO) in RAW264.7 macrophages. From the extract, three new sesquiterpenes named 5α-hydroperoxyivalin, 8-epi-xanthanol, and 8-epi-isoxanthanol were isolated together with four known sesquiterpenes. The structure of each new sesquiterpenes was determined on the basis of physicochemical and chemical evidence. In addition, all the sesquiterpenoids significantly inhibited the production of NO. Ivalin (IC50=2.0?μM) and 2α-hydroxyalantolactone (1.8?μM) showed particularly strong inhibitory effects, but had strong cytotoxic effects as well. Furthermore, ivalin and 2α-hydroxyalantolactone concentration-dependently reduced inducible NO synthase (iNOS) protein levels in RAW264.7 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号