首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Hawking radiation from the black hole in Ho?ava–Lifshitz gravity is discussed by a reformulation of the tunneling method given in Banerjee and Majhi (2009) [17]. Using a density matrix technique the radiation spectrum is derived which is identical to that of a perfect black body. The temperature obtained here is proportional to the surface gravity of the black hole as occurs in usual Einstein gravity. The entropy is also derived by using the first law of black hole thermodynamics. Finally, the spectrum of entropy/area is obtained. The latter result is also discussed from the viewpoint of quasi-normal modes. Both methods lead to an equispaced entropy spectrum, although the value of the spacing is not the same. On the other hand, since the entropy is not proportional to the horizon area of the black hole, the area spectrum is not equidistant, a finding which also holds for the Einstein–Gauss–Bonnet theory.  相似文献   

3.
Algebraic aspects of the computation of partition functions for quantum gravity and black holes in AdS3AdS3 are discussed. We compute the sub-leading quantum corrections to the Bekenstein–Hawking entropy. It is shown that the quantum corrections to the classical result can be included systematically by making use of the comparison with conformal field theory partition functions, via the AdS3/CFT2AdS3/CFT2 correspondence. This leads to a better understanding of the role of modular and spectral functions, from the point of view of the representation theory of infinite-dimensional Lie algebras. Besides, the sum of known quantum contributions to the partition function can be presented in a closed form, involving the Patterson–Selberg spectral function. These contributions can be reproduced in a holomorphically factorized theory whose partition functions are associated with the formal characters of the Virasoro modules. We propose a spectral function formulation for quantum corrections to the elliptic genus from supergravity states.  相似文献   

4.
5.
6.
7.
8.
9.
吴双清  蔡勖 《中国物理》2002,11(7):661-665
The quantum thermal effect of Weyl neutrinos in a rectilinearly non-uniformly accelerating Kinnersley black hole is investigated using the generalized tortoise coordinate transformation.The equations that determine the location,the Hawking temperature of the event horizon and the thermal radiation spectrum of neutrinos are derived.Our results show that the location and the temperature of the event horizon depend not only on the time but also on the angle.  相似文献   

10.
In this Letter,we examine the phantom energy accretion onto a Kehagias-Sfetsos black hole in Horava-Lifshitz gravity.To discuss the accretion process onto the black hole,the equations of phantom flow near the black hole have been derived.It is found that mass of the black hole decreases because of phantom accretion.We discuss the conditions for critical accretion.Graphically,it has been found that the critical accretion phenomena is possible for different values of parameters.The results for the Schwarzschild black hole can be recovered in the limiting case.  相似文献   

11.
This paper derives the Hawking flux from the Schwarzschild black hole with a global monopole by using Robinson and Wilczek's method. Adopting a dimensional reduction technique, it can describe the effective quantum field in the (3 + 1)-dimensional global monopole background by an infinite collection of the (1 + 1)-dimensional massless fields if neglecting the ingoing modes near the horizon, where the gravitational anomaly can be cancelled by the (1 + 1)- dimensional black body radiation at the Hawking temperature.  相似文献   

12.
We study Hawking radiation in a new class of black hole solutions in Einstein–Gauss–Bonnet theory. The black hole has been argued to have vanishing mass and entropy, but finite Hawking temperature. To check if it really emits radiation, we analyze Hawking radiation using the original method of quantization of a scalar field in the black hole background and with the quantum tunneling method, and confirm that it emits radiation at the Hawking temperature. A general formula is derived for the Hawking temperature and backreaction in the tunneling approach. Physical implications of these results are discussed.  相似文献   

13.
We extend the classical Damour–Ruffini method and discuss Hawking radiation in Kerr–Newman–de Sitter (KNdS) black hole. Under the condition that the total energy, angular momentum and charge of spacetime are conserved, taking the reaction of the radiation of the particle to the spacetime and the relation between the black hole event horizon and the cosmological horizon into consideration, we derive the black hole radiation spectrum. The radiation spectrum is no longer a pure thermal one. It is related to the change of the Bekenstein–Hawking entropy corresponding the black hole event horizon and the cosmological horizon. It is consistent with the underlying unitary theory.  相似文献   

14.
Generalizing the method proposed by Damour–Ruffini, we discuss Hawking radiation of a Reissner–Nordström–de Sitter (RNdS) black hole. Under the condition that total energy and charge are conserved, taking the reaction of the radiation of particles to the spacetime into consideration and considering the interrelation between the event horizon and cosmological horizon, we investigate radiation spectrum of RNdS spacetime by a new Tortoise coordinate transformation. This radiation spectrum is no longer a purely thermal spectrum. It is related to the changes in the Bekenstein–Hawking entropy corresponding the event horizon and cosmological horizon. The result satisfies the unitary principle.  相似文献   

15.
曾晓雄  周史薇  刘文彪 《中国物理 B》2012,21(9):90402-090402
The recent work of Nation et al., in which the Hawking radiation energy and entropy flow from a black hole is considered to be produced in a one-dimensional Landauer transport process, is extended to the case of a Reissner- Nordstrom black hole. The energy flow contains not only the contribution of the thermal flux but also that of the particle flux. It is found that the charge can also be transported via the one-dimensional quantum tunnel. Because of the existence of the electrostatic potential, the entropy production rate is shown to be smaller than that of the Schwarzschild black hole.  相似文献   

16.
刘成周  朱建阳 《中国物理 B》2009,18(10):4161-4168
In the framework of the gravity's rainbow, the asymptotic quasinormal modes of the modified Schwarzschild black holes undergoing a scalar perturbation are investigated. By using the monodromy method, we analytically calculated the asymptotic quasinormal frequencies, which depend on not only the mass parameter of the black hole, but also the particle's energy of the perturbation field. Meanwhile, the real parts of the asymptotic quasinormal modes can be expressed as TH\ln 3, which is consistent with Hod's conjecture. In addition, for the quantum corrected black hole, the area spacing is independent of the particle's energy, even though the area itself depends on the particle's energy. And that, by relating the area spectrum to loop quantum gravity, the Barbero-Immirzi parameter is given and it remains the same as from the usual black hole.  相似文献   

17.
This paper is devoted to an investigation of nonlinearly charged dilatonic black holes in the context of gravity’s rainbow with two cases: (1) by considering the usual entropy, (2) in the presence of first order logarithmic correction of the entropy. First, exact black hole solutions of dilatonic Born–Infeld gravity with an energy dependent Liouville-type potential are obtained. Then, thermodynamic properties of the mentioned cases are studied, separately. It will be shown that although mass, entropy and the heat capacity are modified due to the presence of a first order correction, the temperature remains independent of it. Furthermore, it will be shown that divergences of the heat capacity, hence phase transition points are also independent of a first order correction, whereas the stability conditions are highly sensitive to variation of the correction parameter. Except for the effects of a first order correction, we will also present a limit on the values of the dilatonic parameter and show that it is possible to recognize AdS and dS thermodynamical behaviors for two specific branches of the dilatonic parameter. In addition, the effects of nonlinear electromagnetic field and energy functions on the thermodynamical behavior of the solutions will be highlighted and dependency of critical behavior, on these generalizations will be investigated.  相似文献   

18.
In this paper we consider the three-dimensional Gödel black hole as a background and we study the vector particle tunneling from this background in order to obtain the Hawking temperature. Then, we study the propagation of a massive charged scalar field and we find the quasinormal modes analytically, which turns out be unstable as a consequence of the existence of closed time-like curves. Also, we consider the flux at the horizon and at infinity, and we compute the reflection and transmission coefficients as well as the absorption cross section. Mainly, we show that massive charged scalar waves can be superradiantly amplified by the three-dimensional Gödel black hole and that the coefficients have an oscillatory behavior. Moreover, the absorption cross section is null at the high frequency limit and for certain values of the frequency.  相似文献   

19.
By constructing a set of appropriate matrices γμγμ for general covariant Dirac equation, we further extend fermion tunneling method to 5-dimensional Kerr–AdS black hole, and show that the expected Hawking temperature is recovered.  相似文献   

20.
In this study, we investigate the Hawking radiation in higher dimensional Reissner-Nordstr?m black holes as received by an observer located at infinity. The frequency-dependent transmission rates, which deform the thermal radiation emitted in the vicinity of the black hole horizon, are evaluated numerically. In addition to those in four-dimensional spacetime, the calculations are extended to higher dimensional Reissner-Nordstr?m metrics, and the results are observed to be sensitive to the spacetime dimension to an extent. Generally, we observe that the transmission coefficient practically vanishes when the frequency of the emitted particle approaches zero. It increases with frequency and eventually saturates to a certain value. For four-dimensional spacetime, the above result is demonstrated to be mostly independent of the metric's parameter and the orbital quantum number of the particle, when the location of the event horizon, \begin{document}$ r_h$\end{document}, and the product of the charges of the black hole and the particle qQ are known. However, for higher-dimensional scenarios, the convergence becomes more gradual. Moreover, the difference between states with different orbital quantum numbers is observed to be more significant. As the magnitude of the product of charges qQ becomes more significant, the transmission coefficient exceeds 1. In other words, the resultant spectral flux is amplified, which results in an accelerated process of black hole evaporation. The relationship of the calculated outgoing transmission coefficient with existing results on the greybody factor is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号