首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transition states of elementary reactions of H2 molecule elimination from [B n H n + 1]? anions (n = 6–9, 11) in which nucleophilic/electrophilic vacancies form at boron atoms have been localized by the density functional theory method (in the B3LYP/6-311++G** approximation). For a series of [B n H n + 1]? anions (n = 6–12), the activation barriers to H2 elimination have been compared to consider the possibility of substitution for exopolyhedral hydrogen atoms by the mechanism with the first rate-limiting stage of formation of [B n H n ? 1]? (n = 6–12) intermediates with a vacant “bare” vertex of the boron cluster. For the [B n H n ]2?, [B n H n + 1]?, and [B n H n ? 1]? anions (n = 6–12), the electronic chemical potential μ and Pearson hardness η have been evaluated since these characteristics make it possible to assess the propensity of different reagents to react with each other in terms of the empirical HSAB principle (soft with soft and hard with hard). The application of this principle is exemplified by the interaction of the [B10H9]? and [B12H11]? anions with acetonitrile CH3CN, furan C4H4O, and 18-crown-6.  相似文献   

2.
Quantum chemical computations and study of IR spectra of systems Ni4 + CH4, Ni4 + H2O, and Ni4 +H2O are performed. The results are discussed conjointly with analogous data for products of reactions with Ni n (n=1–3). It is shown that formation of complexes with either hydrogen atoms or CH3 and OH radicals in a bridged position is characteristic of these systems. It is essential that the ground state of the nickel frame formed in Ni4 systems has the form of a flat rhombus, which is different from the main isomer form of Ni4 having pyramidal structure.  相似文献   

3.
The molecular structures, electron affinities, and dissociation energies of neutral Si n Li (n = 2–10) species and their anions have been studied by the B3LYP and the BPW91 methods in conjunction with a DZP++ basis set. The geometries have been fully optimized with each of the proposed methods. The ground state structure of neutral Si n Li keeps the corresponding Si n framework unchanged. For anion, the corresponding Si n (or ${{\rm Si}_{n}^{-}}$ ) framework changes largely when n ≥ 7. To evaluate the stability of the resulting anions we have calculated the adiabatic electron affinity (EAad), the vertical electron affinity (EAvert), and the vertical detachment energy (VDE). The dissociating energies of Li from the lowest energy structures of neutral Si n Li and their anions are calculated to examine relative stabilities.  相似文献   

4.
IR spectra of 1-germatranol, 1,1-quasi-germatrandiole, 1,1,1-hypogermatrantriole with a general formula (HO)4?n Ge(OCH2CH2) n NR3?n (n = 1–3) are obtained. At the B3LYP/aug-cc-pVDZ density functional level the equilibrium structures and vibrational spectra of these compounds along with their hydrogen-bonded dimers are calculated. Based on the calculations the band assignment is performed in the IR spectra of 1-germatranol, 1,1-quasi-germatrandiole, and 1,1,1-hypogermatrantriole. The existence of dimers is manifested in the IR spectra as the absence of bands in the frequency ranges characteristic of the bending vibrations of Ge-OH groups and the presence of bands in the vibrational range of hydrogen-bonded germatranyl groups.  相似文献   

5.
1 INTRODUCTION Carbon-chain species are widely present in the interstellar medium as possible carriers of the diffuse interstellar bands. They play an important role in diverse chemical processes and nanoscience as intermediates and building units. Because of their high reactivity, bare carbon chains are readily termi- nated by a wide variety of atoms, forming XCn or XCnX linear clusters[1]. During the past decade, lots of theoretical spectra of different carbon chain systems have been …  相似文献   

6.
 The possible geometrical structures and relative stability of (SiS2) n (n=1–6) silicon–sulfur clusters are explored by means of density functional theory quantum chemical calculations. The effects of polarization functions and electron correlation are included in these calculations. The electronic structures and vibrational spectra of the most stable geometrical structures of (SiS2) n are analyzed by the same method. As a result, the regularity of the (SiS2) n cluster growth is obtained, and the calculation may used for predicting the formation mechanism of the (SiS2) n cluster. Received: 17 November 1999 / Accepted: 3 November 2000 / Published online: 3 May 2001  相似文献   

7.
Complexes of nickel atoms and small clusters with acetylene molecules are studied within the density functional theory. A trend toward the predominant formation of structures with bridge hydrogen atoms is observed in reactions between Ni n and acetylene with rising n.  相似文献   

8.
To look for the single-source precursors, density functional theory calculations were performed to study structures, IR spectra, and stabilities of the possible isomers for the clusters (I2GaN3) n (n = 1–4). It is found that the optimized (I2GaN3) n (n = 2–4) clusters all possess cyclic structure containing Ga-Nα-Ga linkages, and azido group in azides has linear structure. Trends in geometrical parameters with the oligomerization degree n are discussed. The IR spectra are obtained and assigned by vibrational analysis. Thermodynamic properties are linearly correlated with the oligomerization degree n as well as the temperature. Mean-while, the oligomerizations can occur spontaneously at 298.2 K.  相似文献   

9.
To look for the single-source precursors, the structures and properties of (Br2AlN3) n (n = 1–4) clusters are studied at the B3LYP/6-311+G* level. The optimized (Br2AlN3) n (n = 2–4) clusters all possess cyclic structures containing Al-Nα-Al linkages. The relationships between the geometrical parameters and the oligomerization degree n are discussed. The gas-phase structures of the trimers prefer to exist in the boat-twisting conformation. As for the tetramer, the most stable isomers have the S 4 symmetry structure. The IR spectra are obtained and assigned by the vibrational analysis. The thermodynamic properties are linearly related with the oligomerization degree n as well as with the temperature. Meanwhile, the thermodynamic analysis of the gas-phase reaction suggests that the oligomerization be exothermic and favorable under high temperature.  相似文献   

10.
A number of configurations of NLi n Na2 (n = 1–4) species were optimized using the B3LYP–density functional theory method; the 6-31G* basis set was used in this calculation. In order to study all possible dissociation energies, some related species such as NLi2Na, NLi n (n = 1–4), Li n (n = 1, 2) and Na n (n = 1, 2) were also considered. Optimizations of these species were followed by fundamental frequency calculations at the same level. Global minima of these species were shown to adopt C 2 v (NLi4Na2, NLi2Na2), D 3 h (NLi3Na2) and C s (NLiNa2 and NLi2Na) configurations. All possible dissociation energies were obtained. Received: 30 November 1998 / Accepted: 15 October 1999 / Published online: 14 March 2000  相似文献   

11.
Anion photoelectron spectroscopic experiments and calculations based on density functional theory have been used to investigate and uniquely identify the structural, electronic, and magnetic properties of both neutral and anionic (Rh(m)Co(n)) and (Rh(m)Co(n))(-) (m=1-5, n=1-2) clusters, respectively. Negative ion photoelectron spectra are presented for electron binding energies up to 3.493 eV. The calculated electron affinities and vertical detachment energies are in good agreement with the measured values. Computational results for geometric structures and magnetic moments of both cluster anions and their neutrals are presented.  相似文献   

12.
《Chemical physics letters》2003,367(1-2):245-251
The electronic structures and energies of (H2O)n·CCH and (H2O)n·HCC complexes (n=1–3) between CCH and water have been theoretically investigated at the UB3LYP/6-311++G(2df,p)//UB3LYP/6-311G(d,p) level. The complexes with n=2–3 are cyclic structures with homodromic hydrogen-bond chain. The (H2O)n·CCH (n=1–3) complexes show increasing stabilities towards CCH- or H2O-eliminations of 2.3, 5.8 and 7.6 kcal/mol and are energetically more stable than the corresponding (H2O)n·HCC complexes by 0.8, 2.7 and 3.4 kcal/mol, respectively, due to the charge-separation-enhanced hydrogen bonds within (H2O)n·CCH (n=2,3). Strong interactions between CCH and (H2O)2 and (H2O)3 clusters suggest special solvent effects of water on the chemical behavior of unsaturated radicals.  相似文献   

13.
We present density functional calculations of Al n Au clusters for n = 1–15. The growth pattern for Al n Au (n = 1–7, 12, 14, 15) clusters is the Au atom occupying a peripheral position of Al n clusters, and the growth pattern for Al n Au (n = 8, 10 and 13) clusters is Au-substituted Al n+1 clusters. It is found that the Au atom replaces the surface atom of an Al n+1 cluster and occupies a peripheral position. In addition, the ground state structures of Al n Au clusters are more stable than pure Aln clusters. It is found that the Al13Au cluster exhibits high stability.  相似文献   

14.
The Te ⋅⋅⋅ Te secondary bonding interactions (SBIs) in solid cyclic telluroethers were explored by preparing and structurally characterizing a series of [Te(CH2)m]n (n=1–4; m=3–7) species. The SBIs in 1,7-Te2(CH2)10, 1,8-Te2(CH2)12, 1,5,9-Te3(CH2)9, 1,8,15-Te3(CH2)18, 1,7,13,19-Te4(CH2)20, 1,8,15,22-Te4(CH2)24 and 1,9,17,25-Te4(CH2)28 lead to tubular packing of the molecules, as has been observed previously for related thio- and selenoether rings. The nature of the intermolecular interactions was explored by solid-state PBE0-D3/pob-TZVP calculations involving periodic boundary conditions. The molecular packing in 1,7,13,19-Te4(CH2)20, 1,8,15,22-Te4(CH2)24 and 1,9,17,25-Te4(CH2)28 forms infinite shafts. The electron densities at bond critical points indicate a narrow range of Te ⋅⋅⋅ Te bond orders of 0.12–0.14. The formation of the shafts can be rationalized by frontier orbital overlap and charge transfer.  相似文献   

15.
《Chemical physics letters》1987,141(6):493-498
A useful graphical method for the assignment and analysis of the effects of Fermi resonance in rotational spectra has been devised and applied to vibrational satellites in the microwave spectrum of H12C14N…H19F. The analysis leads to a value of 7.4 cm−1 for the cubic potential constant kσββ.  相似文献   

16.
 The most stable structures of V x O y +/V x O y (x=1, 2, y=1–5) clusters and their interaction with O2 are determined by density functional calculations, the B3LYP functional with the 6-31G* basis set. The nature of the bonding of these clusters and the interaction with O2 have been studied by topological analysis in the framework of both the atoms-in-molecules theory of Bader and the Becke–Edgecombe electron localization function. Bond critical points are localized by means of the analysis of the electron density gradient field, ∇ρ(r), and the electron localization function gradient field, ∇η(r). The values of the electron density properties, i.e., electron density, ρ(r), Laplacian of the electron density, ∇2ρ(r), and electron localization function, η(r), allow the nature of the bonds to be characterized, and linear correlation is found for the results obtained in both gradient fields. Vanadium-oxygen interactions are characterized as unshared-electron interactions, and linear correlation is observed between the electron density properties and the V–O bond length. In contrast, O2 units involve typical shared-electron interactions, as for the dioxygen molecule. Four different vanadium–oxygen interactions are found and characterized: a molecular O2 interaction, a peroxo O2 2− interaction, a superoxo O2 interaction and a side-on O2 interaction. Received: 15 October 2001 / Accepted: 30 January 2002 / Published online: 24 June 2002  相似文献   

17.
《Chemical physics letters》2001,331(3-4):313-317
The dissociation energies of Fe(CO)n (n=2–4) are computed using correlation consistent basis sets and the CCSD(T) approach. The dissociation energies are extrapolated to the CBS limit and are corrected for core–valence (CV), scalar relativistic, spin–orbit, zero-point, and thermal effects. Our iron carbonyl bond strengths agree with experiment within the respective error bars. We use our dissociations energies at 298 K to obtain the heats of formation of Fe(CO)n (n=1–4).  相似文献   

18.
HgBa2Can-1CunO2n+2+( (n=1, 2, 3, 4) 1 are tetragonal with space group space P4/mmm. For n=1,2,3, nearly single-phase crystals were obtained, while for n=4, the sample was primarily a mixture of the n=3 and 4 phases. These materials also possessed the highest Tc values yet observed for any superconductors. In this paper, the valences of elements in the title compounds were calculated from bond valence sum method 2. The calculated bond covalency, valences of elements were summarized in Table …  相似文献   

19.
We introduce an experimental platform designed around a thermomechanical helium fountain, which is aimed at investigating spectroscopy and dynamics of atoms and molecules in the superfluid and at its vapor interface. Laser ablation of copper, efficient cooling and transport of Cu and Cu(2) through helium vapor (1.5 K < T < 20 K), formation of linear and T-shaped Cu(2)-He complexes, and their continuous evolution into large Cu(2)-He(n) clusters and droplets are among the processes that are illustrated. Reflection is the dominant quantum scattering channel of translationally cold copper atoms (T = 1.7 K) at the fountain interface. Cu(2) dimers mainly travel through the fountain unimpeded. However, the conditions of fountain flow and transport of molecules can be controlled to demonstrate injection and, in particular, injection into a nondivergent columnar fountain with a plug velocity of about 1 m/s. The experimental observables are interpreted with the aid of bosonic density functional theory calculations and ab initio interaction potentials.  相似文献   

20.
Gas-phase reactions of hydrated divalent alkaline earth metal ions and benzene were investigated by electrospray ionization Fourier-transform mass spectrometry. Rate constants for solvent-exchange reactions were determined as a function of hydration extent for Mg2+, Ca2+, Sr2+, and Ba2+ clusters containing four to seven water molecules each. All of the strontium and barium clusters react quickly with benzene. Barium reacts slightly faster than the corresponding strontium cluster with the same number of water molecules attached. For calcium, clusters with four and five water molecules react quickly, whereas those with six and seven water molecules do not. Magnesium with four water molecules reacts quickly, but not when five through seven water molecules are attached. The slow reactivity observed for some of these clusters indicates that the cation-pi interaction between the metal ion and benzene is partially screened by the surrounding water molecules. The reactivity of magnesium with seven water molecules is intermediate that of the hexa- and pentahydrate and the tetrahydrate. This result is consistent with the seventh water molecule being in the outer shell and much more weakly bound. The unusual trend in reactivity observed for magnesium may be due to the presence of mixed shell structures observed previously. These results are the first to provide information about the relative importance of cation-pi interactions in divalent metal ions as a function of metal hydration extent. Such studies should also provide a model and some insight into the relative binding affinities of divalent metal ions to aromatic residues on peptides and proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号