首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The surface of submicrometer silica spheres are modified with aminopropyl and phenyl groups through a one-step process. Various experimental techniques, i.e., scanning electron microscopy (SEM), quasi-elastic light scattering (QELS), differential scanning calorimetry (DSC), thermogravimetry (TG), zeta potential measurement, nitrogen sorption, and water vapor and organic dye adsorption are used to comprehensively characterize the pure (TEOS particles) and modified silica particles. The SEM micrographs of the particles demonstrate that the modified particles are spherical with uniform size and shape. The particles modified with aminopropyl groups (APTES particles) show the highest isoelectric point (IEP) and the highest weight loss at 780 degrees C because of the basic nature of aminopropyl groups and the higher reactivity of aminopropyltriethoxysilane. The particles modified with the phenyl groups (PhTES particles) show the lowest water vapor adsorption because their surface is more hydrophobic than that of TEOS and APTES particles. The organic dye (brilliant blue FCF or BBF) adsorption experiments demonstrate that the adsorption capacity of the particles increases greatly after acidification. This is caused by the protonation of silanol groups and amine groups on the particle surface, which presents an enhanced electrostatic attraction with BBF anions. The APTES particles exhibit the highest dye adsorption due to the hydrophobic attractions and the enhanced electrostatic attractions from aminopropyl groups.  相似文献   

2.
In order to improve the rheological behavior of the nanosilica composite no-flow underfill, filler surface treatment using silane coupling agents was investigated to reduce the filler-filler interaction and to achieve the mono-dispersity of the nanosilica in the underfill resin. The experimental conditions of the surface treatment were investigated in a design of experiment (DOE) in terms of the pre-treatment methods, coupling agent types, concentrations, and treatment durations. The particle dispersion after treatment was evaluated by the laser particle analyzer and the transmission electron microscopy (TEM). A mono-dispersed nanosilica solution in the polar medium was achieved using optimal experimental condition. The surface chemistry of the nanosilica was studied using Fourier transformed infrared spectroscopy (FTIR). The wettability of underfill resin and water on the silane treated glass slides was studied using a goniometer. Based on the investigations, the silane-treated nanosilica fillers were incorporated into an underfill resin to formulate a nanocomposite no-flow underfill. It was found that the proper filler treatment could significantly reduce the viscosity of the nanocomposite.  相似文献   

3.
《印度化学会志》2023,100(10):101085
Mineral wool materials are consistently preferred material to be used for building thermal insulation because of their low heat conductivity, making energy-efficient structures impossible to construct without highly insulating thermal envelopes. A mineral wool with a hydrophobic external surface could be used for several applications where hydrophobicity would be helpful. Organo-silanes are one of the most promising materials to impart hydrophobic character to varied surfaces to achieve performance properties such as dust-resistant coatings on building glass, solar panels with self-cleaning surfaces, biofouling resistant paints, self-cleaning car windshields etc. In this study, mineral wool was treated with methyltrimethoxysilane (MTMS) to achieve hydrophobic surfaces.A Fourier Transform Infrared Spectrometer is used to confirm the successful deposition of organosilane/siloxane networks on glass wool fibre surfaces. The hydrophobicity of treated wool was assessed and quantified using a contact angle measurement. Contact angle measurement was used to quantify the hydrophobicity of treated wool. The thermal conductivity of treated mineral wool fiber was calculated using the portable Lee's disc method. To determine the thermal stability and crystallinity of the treated wool, X-ray diffraction spectroscopy and thermogravimetric analysis were used, respectively. The treated mineral wool exhibited excellent thermal stability up to 800 °C, and wettability tests proved the treated surface highly hydrophobic, allowing water droplets to roll off with contact angles up to 134.9°. Surface modification reduced thermal conductivity by 20%, showing good thermal resistance. Here, we show easy and sustainable methods of treating mineral wool surfaces, which can serve as a thermal insulation option under humid conditions.  相似文献   

4.
Magnetically modified functional particles are emerging as one of the most promising candidate in numerous multidisciplinary applications. In this research, a simple process has been developed to prepare magnetically modified aminated silica (SiO2) particles. Herein, submicron‐sized SiO2 particles were modified with poly(methylmethacrylate‐methacrylic acid) by seeded polymerization without any stabilizer. The carboxyl groups localized near the particles surface were then covalently linked with ethylene diamine to prepare aminated composite particles. Iron ions were then precipitated on the surface of aminated composite particles to obtain magnetically doped functional SiO2 particles. The preparation of such particles was confirmed by scanning electron microscopy, Fourier transform infrared, 1H NMR, X‐ray photoelectron spectroscopy and thermogravemetric analyses. Relative measurement of adsorption study of different biomolecules suggested that magnetically doped functional silica particles are comparatively hydrophobic. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
Methods of estimating the degree of condensation of the surface silanol groups of silica due to its modification by silane coupling agents are reported.Also, a procedure for estimating the surface silanol groups for the pre- and post-modified silicas for the NIR 7326 cm–1 band is given.Using electron microscope studies and heats of immersion of silica surfaces, the silane effect on agglomeration of silica particles and, thus, on the physicochemical properties of its surface has been demonstrated.  相似文献   

6.
Asymmetric nanocomposite particle pairs of polystyrene and silica were prepared via one-step miniemulsion polymerization for the first time. The transmission electron microscopy images showed that these nanocomposite particle pairs were monodisperse and highly asymmetric in morphology. The key to obtaining the asymmetric nanocomposite particle pairs was the combination of miniemulsion polymerization and the local surface modification of silica substrates. Because of localized surface modification on the silica surface, the nucleation and formation of the polymer nodule in miniemulsion polymerization took place only in the modified area on the silica surface, thus ensuring the asymmetric morphology. The asymmetrical materials obtained by the facile and effective method will have significant potential applications in some areas including biomedical fields.  相似文献   

7.
8.
The paper reports a novel approach to achieve self-healing surface hydrophobicity. Mesoporous silica is used as the reservoir for hydrophobic molecules, i.e., octadecylamine (ODA), that can release and refresh the surface hydrophobicity consecutively. A polymdopamine layer is used to further encapsulate silica-ODA, providing a reactive layer, governing release of the underlying ODA, and improving the dispersivity of silica nanoparticles in bulk resin. The approach arrives at self-healing (super)hydrophobicity without using any fluoro-containing compounds.  相似文献   

9.
Mesoporous silica capsules with submicrometer sizes were successfully prepared via the interfacial hydrolysis and condensation reactions of tetraethoxysilane (TEOS) in inverse miniemulsion by using hydrophilic liquid droplets as template. The inverse miniemulsions containing pH-controlled hydrophilic droplets were first prepared via sonication by using poly(ethylene-co-butylene)-b-poly(ethylene oxide) (P(E/B)-PEO) or SPAN 80 as surfactant. TEOS was directly introduced to the continuous phase of an inverse miniemulsion. The silica shell was formed by the deposition of silica on the surface of droplets. The formation of capsule morphology was confirmed by transmission electron microscopy (TEM) and field emission scanning electron microscopy (FESEM). The mesoporous structure was verified by nitrogen sorption measurements. The specific surface area could be tuned by the variation of the amount of cetyltrimethylammonium bromide (CTAB) and TEOS, and the pore size by the amount of CTAB. The influences of synthetic parameters on the particle size and morphology were investigated in terms of the amount of CTAB, pH value in the droplets, TEOS amount, surfactant amount, and type of solvent with low polarity. A formation mechanism of silica capsules was proposed.  相似文献   

10.
A novel kind of magnetic core/mesoporous silica shell nanospheres with a uniform particle diameter of ca. 270 nm was synthesized. The inner magnetic core endues the whole nanoparticle with magnetic properties, while the outer mesoporous silica shell shows high enough surface area and pore volume. The synthesized material is expected to be applied to targeted drug delivery and multiphase separation. The storage and release of ibuprofen into and from the pore channels of the mesoporous silica shell, as a typical example, are demonstrated.  相似文献   

11.
纳米二氧化硅的表面改性研究   总被引:17,自引:0,他引:17  
以γ-缩水甘油醚丙基三甲氧基硅烷(GPTMS)对酸催化水解正硅酸乙酯(TEOS)聚合得到的纳米二氧化硅胶粒表面进行接枝改性,用激光粒径仪测定二氧化硅颗粒的粒径,并用透射电子显微镜(TEM)观察了改性前后二氧化硅胶粒的分散状况,采用傅立叶红外(FTIR)光谱法对改性前后的二氧化硅粉体进行了分析,通过热失重分析(TGA)法对GPTMS接枝改性二氧化硅胶粒表面的接枝度进行分析计算,同时对颗粒溶胶的ζ电位进行了测试,结果表明:改性后二氧化硅胶粒分散性大大提高,硅烷偶联剂浓度对接枝度有显著影响,当GPTMS的浓度为1mL/S iO2(g)时,接枝度达到最大,且颗粒表面的物理化学性能发生显著变化。  相似文献   

12.
13.
Nanocrystalline cellulose (NCC) is a promising nanofiller for reinforcing chitosan (CTS) film. The flocculation of the NCC suspension in acidic CTS solution is the key problem that makes many properties such as the tensile strength bad. A derivative of nanocellulose, namely cationic dialdehyde cellulose (CDAC), is synthesized in the current study to avoid the flocculation. A CDAC suspension is prepared in a successive oxidation-reductive amination process of NCC. The oxidation of NCC led to smaller rod-like nanocrystals with a reduced crystallinity. The suspension with 1.0% CDAC is well mixed with 1.0% CTS solution. Besides, the tensile strength and anti-swelling properties of CDAC-filled CTS nanocomposite films are improved because of the uniform distribution of CDAC in the CTS matrix plus the intermolecular chemical cross-linking between CDAC and CTS. The tensile strength of CTS-based nanocomposite film with 12% CDAC is about 58.4% higher than that of the pure CTS film.  相似文献   

14.
15.
16.
The effect of a remote oxygen plasma on nanocomposite hybrid polymer thin films of poly[(propylmethacryl-heptaisobutyl-polyhedral oligomeric silsequioxane)-co-(methylmethacrylate)] (POSS-MA) has been examined by advancing contact angle, X-ray photoelectron spectroscopy (XPS), and variable-angle spectroscopic ellipsometry (VASE). Exposure to a 25 W remote oxygen-containing plasma was found to convert the surface of POSS-MA films from hydrophobic to hydrophilic within 20 s. The exposure time needed for this conversion to occur decreased as the O2/N2 ratio in the plasma environment increased, indicating a positive correlation between the hydrophilicity and the presence of oxygen in the plasma. Local bonding information inferred from high-resolution XPS data showed that the isobutyl bonding to the POSS moiety is replaced with oxygen as a result of plasma exposure. Finally, VASE data demonstrates that increasing the weight percent of POSS in the copolymer significantly impedes the oxygen plasma degradation of POSS-MA films. On the basis of these results, a model is presented in which the oxygen plasma removes isobutyl groups from the POSS cages and leaves a SiO2-like surface that is correspondingly more hydrophilic than the surface of the untreated samples and is more resistant to oxidation by the plasma. The ability to modify surfaces in this manner may impact the utility of this material for biomedical applications such as microfluidic devices in which the ability to control surface chemistry is critical.  相似文献   

17.
In this work, porous silicon (PS) films with varied porosity (68–82%) were formed on the p-type, boron-doped silicon wafer (100) by the electrochemical anodisation in an aqueous hydrofluoric acid and isopropyl alcohol solution at different current densities (I d) ranging from 20–70 mA cm?2, respectively. Biofunctionalisation of the PS surface was carried out by chemically modifying the surface of PS by the deposition of 3-aminopropyltriethoxysilane thermally leading to high density of amine groups covering the PS surface. This further promotes the immobilisation of immunoglobulin (human IgG and goat anti-human IgG binding) on to the PS surface. Formation of nanostructured PS and the attachment of antibody–antigen to its surface were characterised using photoluminescence (PL), Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy techniques, respectively. The possibility of using these structures as biosensors has been explored based on the significant changes in the PL spectra before and after exposing the PS optical structures to biomolecules. These experimental results open the possibility of developing optical biosensors based on the variation of the PL position of the PL spectra of PS-based devices.  相似文献   

18.
Surface modification offers a great opportunity to adjust both the pore diameter and surface properties of MCM-41 type organic–inorganic hybrid materials which result in materials of improved hydrothermal and mechanical stability. Therefore, MCM-41 silica, surface modified with organic ligands, are promising systems with engineered properties and attractive for advanced applications. In the present study, after optimization of the reaction conditions highly ordered MCM-41 silica spheres with uniform mesopores were prepared by the pseudomorphic transformation route. The effect of functionality and alkyl chain length of the alkyl ligands during surface modification was probed by using butyl and octylsilanes with two different functionalities. Due to steric hindrance, the longer chains are assumed to bind only on the outer silica surface and near the entrance of the pores, while the shorter chains are also able to bind to the interior mesopore walls. The resulting materials were comprehensively characterized before and after surface modification using nitrogen sorption techniques, XRD, SEM, solid-state NMR spectroscopy and FTIR spectroscopy. From chromatographic test measurements it was found that the separation power primarily depends on surface coverage and alkyl chain length. On the basis of the present data, surface modified mesoporous silica of MCM-41 type are very promising candidates for future chromatographic applications.  相似文献   

19.
Silica spheres with uniform size of 230–250 nm were functionalized with sulfonic groups and bi-functionalized with carboxylic and sulfonic groups via a co-condensation route, by adding the organosilanes (3-(triethoxysilyl)mercaptopropyl and 4-(triethoxysilyl)butyronitrile) to a pre-hydrolized TEOS solution. The conversion of mercapto and cyano groups to, respectively, sulfonic and carboxylic groups was carried out by treating both the samples with nitric acid solution. The presence of alkyl-SO3H and alkyl-COOH species at the silica surface in an approximate molar ratio of 1:1 was assessed by TG and NMR. FT-IR spectroscopy showed that both Brønsted acidic groups are accessible and give proton-transfer reaction to ammonia with the formation of ammonium ion. Sulfonic groups react irreversibly with ammonia at room temperature at variance with carboxylic groups which give a reversible proton-transfer, in agreement with the stronger Brønsted acidity of the former.  相似文献   

20.
The effect of a low-molecular-mass salt on the properties of interpolyelectrolyte complexes formed as a result of interactions between poly(diallyldimethylammonium chloride) and copolymers of maleic acid with propylene or α-methylstyrene in their salt containing non-stoichiometric mixtures has been studied. Properties of such interpolyelectrolyte complexes were found to be determined by the chemical nature of the polyelectrolytes and by the salt concentration. The effect of salt on the surface modification of silica particles via their interactions with interpolyelectrolyte complexes has been examined. Two different ways of the surface modification of silica particles were used: (i) silica particles were contacted with previously prepared interpolyelectrolyte complexes and (ii) silica particles were contacted with cationic polyelectrolyte at first and then anionic polyelectrolyte was added. The efficiency of the surface modification was shown to be also dependent on the salt concentration and the chemical nature of polyelectrolytes. Turbidimetry, quasi-elastic light scattering, laser microelectrophoresis, and polyelectrolyte titration were used to characterize studied systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号