首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A mesogenic crosslinking agent M-1 was synthesized to minimize the perturbations of non-mesogenic crosslinking agents in liquid crystalline elastomers. The synthesis of new side chain liquid crystalline elastomers containing the rigid mesogenic crosslinking agent M-1 and nematic monomer M-2 by a one-step hydrosilylation reaction is described. The chemical structures of the monomers and network polymers obtained were confirmed by FTIR and 1H NMR spectroscopy. The mesomorphic properties and phase behaviour were investigated by differential scanning calorimetry, polarizing optical microscopy, and X-ray diffraction. The influence of the crosslinking units on phase behaviour is discussed. Liquid crystalline elastomers containing less than 15 mol % of the crosslinking units showed elasticity, reversible phase transitions and a threaded texture. The experimental results demonstrated that the glass transition temperature of polymers P-1-7 increased with increasing concentration of crosslinking agent M-1; but the isotropic temperature and liquid crystalline range decreased slightly.  相似文献   

2.
Several new side‐chain liquid crystalline (LC) polysiloxanes and elastomers ( IP ‐ VIP ) bearing fluorinated mesogenic units and crosslinking mesogens were synthesized by a one‐step hydrosilylation reaction with poly(methylhydrogeno)siloxane, a fluorine‐containing LC monomer 4′‐undec‐10‐enoyloxy‐biphenyl‐4‐yl 4‐fluoro‐benzoate and a crosslinking LC monomer 4′‐(4‐allyloxy‐benzoxy)‐biphenyl‐4‐yl 4‐allyloxy‐benzoate. The chemical structures and LC properties of the monomers and polymers were characterized by use of various experimental techniques such as FTIR, 1H‐NMR, EA, TGA, DSC, POM and XRD. The effect of crosslinking mesogens on mesomorphic properties of the fluorinated LC polymers was studied as well. The obtained polymers and elastomers were soluble in many solvents such as toluene, tetrahydrofuran, chloroform, and so forth. The temperatures at which 5% weight loss occurred (Td) were greater than 250°C for all the polymers, and the weight of residue near 600°C increased slightly with increase of the crosslinking mesogens in the fluorinated polymer systems. The samples IP , IIP , IIIP and IVP showed both smectic A and nematic phases when they were heated and cooled, but VP and VIP exhibited only a nematic mesophase. The glass transition temperature (Tg) of polymers increased slightly with increase of crosslinking mesogens in the polymer systems, but the mesophase–isotropic phase transition temperature (Ti) and smectic A–nematic mesophase transition temperature (TS‐N) decreased slightly. It suggests that the temperature range of the mesophase became narrow with the increase of crosslinking mesogens for all the fluorinated polymers and elastomers. In XRD curves, the intensity of sharp reflections at low angle decreased with increase of crosslinking mesogens in the fluorinated polymers systems, indicating that the smectic order derived from fluorinated mesogenic units should be destroyed by introduction of more crosslinking mesogens. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
Three series of novel thermotropic liquid crystalline polyurethane elastomers (TLCPUEs) were studied. Hard segments were formed by using hexamethylene diisocyanate (HDI) reacted with a mesogenic unit, benzene-1,4-di(4-iminophenoxy-n-hexanol), which also acted as a chain extender. Three diols: 1,10-decanediol,poly(oxytetramethylene) glycol (PTMEG) M n = 1000 and PTMEG M n = 2000 were used as the soft segments. The effects of soft segments of polyurethanes on the liquid crystalline behavior were studied. Higher molecular weight TLCPUEs were obtained by adding 30?50 mol % of mesogenic segments to diisocyanates. In contrast to a conventional chain extender such as 1,2-ethylene glycol or 1,4-butyl glycol, the synthesized polyurethane elastomers exhibited a mesophase transition by using a mesogenic unit as the chain extender. Mesophase was found for all synthesized LC polyurethanes except of polymers H2-A-12 and H2-A-7. The structures and the thermal properties of all synthesized TLCPUEs were studied by using FTIR spectroscopy, wide-angle x-ray diffraction (WAXD) and DSC measurements, a polarizing microscope equipped with a heating stage, dynamic mechanical analysis (DMA), and thermogravimetric analysis (TGA). Mechanical properties were also examined by using a tensilemeter. © 1995 John Wiley & Sons, Inc.  相似文献   

4.
Glass transition temperatures and thermodynamic parameters of mesophase melting of polymers with mesogenic side-groups of the phenyl benzoate class depend on the length of the alkoxy substitutent, the mobility of the mesogenic groups and the nature of the main chain. Polymers with mesogenic groups connected directly to the main chain, obtained by precipitation from solution, have equilibrium liquid crystalline structures in which the macromolecules exist in a compact coil conformation with an ordered arrangement of the mesogenic groups. The nature of the main chain of these polymers affects the liquid crystalline structure. Mesophase melting parameters of the polymers with mesogenic groups, connected by flexible spacer groups to the main chain, are almost independent of the thermal history of the samples. These polymers in the isotropic melts are assumed to contain aggregates of the mesogenic groups.  相似文献   

5.
A series of azo-type side-chain liquid crystalline polysiloxanes (AZLCPs) were synthesized, starting from organic polysiloxane and azo-type mesogenic compounds having an end allyl group. The AZLCPs were further used to coordinate with palladium dichloride and potassium chloride, by which a series of palladium complexes of AZLCPs (Pd–AZLCPs) were prepared. The mesogenic properties of all of the liquid crystalline polymers were characterized by using differential scanning calorimetry, polarized microscope and wide-angle X-ray diffraction. It was found that all of the polymer ligands and their palladium complexes showed thermotropic liquid crystallinity and that the incorporation of the palladium ions gave positive effects to the mesogenic properties of their polymer ligand counterpart. Compared with the corresponding AZLCPs, the Pd–AZLCPs have higher isotropization temperatures and a broader mesophase temperature range. The mesogenic properties of the liquid crystalline polymer ligands and their palladium complexes were also varied gradually by changing the length of the alkoxy groups on the side chain. The polymers that have a color emissive group and a highly flexible polysiloxane main chain may potentially be used as nonlinear optical materials.  相似文献   

6.
《Liquid crystals》2000,27(10):1393-1397
Side chain type ionic liquid crystalline polymers having a 4-(1,3-dioxan-2-yl)pyridinium structure in their mesogenic side chain were synthesized. These polymers exhibited the smectic A phase. The molecular weights of these ionic liquid crystalline polymers are very high, e.g. for compound 7 - 2 Mw = 486 000.  相似文献   

7.
A series of novel thermotropic side chain liquid crystalline polymers was synthesized by grafting copolymerization of a mesogenic monomer, 4-allyloxybenzoyl-4′?-(4-n-alkylbenzoyl)–p-benzenediol bisate and a chiral monomer, menthyl undecylenate. The mesogenic monomers exhibited nematic threadlike textures during heating and cooling. The polymers showed thermotropic liquid crystalline properties with a broad mesomorphic region over a range of 100°C. The polymers exhibited a cholesteric mesophase with a colourful Grand-Jean texture when the content of chiral units was greater than 15?mol?%; the others exhibited nematic threadlike textures. All of the polymers were thermally stable over 300°C, and most were laevorotatory as the chiral monomer.  相似文献   

8.
Two homologous series of flexible main chain liquid crystalline polyesters with isomeric mesogenic groups containing conjugated double bonds, were synthesized and studied by differential scanning calorimetry and optical microscopy. One series (S1) has the p-phenylene-diacryloyloxydibenzoyl moiety as a mesogenic unit. The other (S2) has the terephtaloyl dioxydicinnamoyl moiety as a mesogenic unit. The reactivity of the conjugated double bonds of the p-phenylenediacryloxy unit, at the temperature of mesophase formation, impedes the stability of liquid crystalline mesophases of polymers of series (S1). Two low molecular weight analogues of polymers were also prepared and their properties compared with those of polymers of similar structure. The two model compounds form stable smectic mesophases over a wide range of temperatures, which shows the high mesomorphogenic ability of both mesogenic units.  相似文献   

9.
A series of liquid crystalline polyesters with a rigid T-shaped or a stick-like mesogenic fragment and fluorinated terminal groups of various structures was synthesized and studied by means of polarization optical microscopy, differential scanning calorimetry, and IR and 1H NMR spectroscopy. It was shown that the effect of the fluorinated group on the thermostability of the mesophase depends on the shape of the mesogenic fragment. The thermostability of the mesophase in callimatic liquid crystalline compounds with perfluorinated terminal groups is higher and in those with difluoromethyl terminal groups containing one hydrogen atom is lower compared with their alkyl analogs. This is connected with the possibility of weak hydrogen bonding that destroys the liquid crystalline order. The thermostability of the mesophase in compounds with a T-shaped mesogenic fragment and any fluorinated terminal groups is always higher compared with their alkyl analogs.  相似文献   

10.
The synthesis of new side-chain cholesteric liquid crystalline elastomers, containing the flexible non-mesogenic crosslinking agent M-1 and the cholesteric monomer M-2, is described by a one-step hydrosilication reaction. The chemical structures of the monomers and network polymers obtained were confirmed by FT-IR spectroscopy. Their mesogenic properties and phase behavior were investigated by differential scanning calorimetry, polarizing optical microscopy, and x-ray diffraction measurements. The influence of the crosslinking units on the phase behavior is discussed. The network polymers showed elasticity, reversible phase transitions, and cholesteric Grandjean texture. The experimental results demonstrated that the glass transition temperatures and isotropization temperatures of network elastomers decreased as the concentration of crosslinking units was increased, but the cholesteric phase was not disturbed.  相似文献   

11.
《Liquid crystals》2001,28(11):1611-1621
New liquid crystalline diacrylates and tetra-acrylates containing four to six aromatic rings were synthesized and characterized, and their mesophase behaviour was investigated. They are designed to be used in combination with chiral molecules to form cholesteric mesophases which can be crosslinked by photopolymerization. The acrylates presented exhibit broad mesophase ranges since mesogenic moieties longer than three are employed. Most diacrylates show no isotropization, due to premature thermal polymerization above 180°C. Additionally, liquid crystalline dipropionates were synthesized as reference compounds which cannot be crosslinked, and selected examples of these exhibit isotropization temperatures as high as 238°C prior to thermal degradation. Substituents at the mesogenic moiety have a great influence on the mesophase characteristics. Bulky substituents such as the tert-butyl group, induce a nematic mesophase, whereas compounds with small substituents (e.g. OCH3) or unsubstituted molecules also exhibit smectic phases. Tetra-acrylates with unsubstituted and substituted mesogenic units feature nematic mesophases only as a result of the additional spacers attached. Here isotropization was observed without polymerization at temperatures around 120-160°C.  相似文献   

12.
New side‐chain cholesteric liquid‐crystalline elastomers containing cholesteryl 4‐allyloxybenzoate as cholesteric mesogenic units and biphenyl 4,4′‐bis(10‐undecen‐1‐ylenate) as smectic crosslinking units were synthesized. The chemical structures of the olefinic compounds and polymers obtained were confirmed by element analysis, Fourier transform infrared, proton nuclear magnetic resonance, and carbon‐13 nuclear magnetic resonance spectra. The mesogenic properties were investigated by differential scanning calorimetry, thermogravimetric analysis, polarizing optical microscopy, and X‐ray diffraction measurements. The influence of the concentration of the crosslinking unit on the phase behavior of the elastomers was examined. The elastomers containing less than 17 mol % of the crosslinking units revealed elasticity, reversible mesomorphic phase transition, wider mesophase temperature ranges, and higher thermal stability. The experimental results demonstrated that the glass‐transition temperature, isotropization temperature, and mesophase temperature ranges decreased with an increasing concentation of the crosslinking unit. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5262–5270, 2004  相似文献   

13.
Side chain type ionic liquid crystalline polymers having a 4-(1,3-dioxan-2-yl)pyridinium structure in their mesogenic side chain were synthesized. These polymers exhibited the smectic A phase. The molecular weights of these ionic liquid crystalline polymers are very high, e.g. for compound 7 - 2 M w = 486 000.  相似文献   

14.
New liquid crystalline diacrylates and tetra-acrylates containing four to six aromatic rings were synthesized and characterized, and their mesophase behaviour was investigated. They are designed to be used in combination with chiral molecules to form cholesteric mesophases which can be crosslinked by photopolymerization. The acrylates presented exhibit broad mesophase ranges since mesogenic moieties longer than three are employed. Most diacrylates show no isotropization, due to premature thermal polymerization above 180°C. Additionally, liquid crystalline dipropionates were synthesized as reference compounds which cannot be crosslinked, and selected examples of these exhibit isotropization temperatures as high as 238°C prior to thermal degradation. Substituents at the mesogenic moiety have a great influence on the mesophase characteristics. Bulky substituents such as the tert-butyl group, induce a nematic mesophase, whereas compounds with small substituents (e.g. OCH3) or unsubstituted molecules also exhibit smectic phases. Tetra-acrylates with unsubstituted and substituted mesogenic units feature nematic mesophases only as a result of the additional spacers attached. Here isotropization was observed without polymerization at temperatures around 120-160°C.  相似文献   

15.
A new ionic liquid crystal bearing a sulphonate group in the mesogenic core, potassium 2-allyloxy-5-cholesteryloxycarbonylbenzenesulphonate, was synthesized. Its chemical structure was determined by various techniques including FTIR and 1H NMR. Its liquid crystalline properties were characterized by DSC, POM and SAXS; it exhibits a smectic C mesophase. In dielectric constant measurements a maximum Δε value of -43.0 D was obtained at 210°C. The morphology of this ionic liquid crystal indicated a slant array of ionic mesogenic units under a static electric field.  相似文献   

16.
Eight banana-shaped side chain liquid crystalline oligomers and polymers have been synthesized by hydrosilylation of vinyl-terminated bent-core mesogens with trimethylsilyl-terminated siloxanes. The synthesized oligomers and polymers, and their olefinic precursors, were investigated by polarizing optical microscopy (POM), differential scanning calorimetry, X-ray diffraction (XRD), electro-optical experiments and Maldi-Tof. The short-tailed olefins form a Colr mesophase, whereas those with longer chains exhibit the SmCPA mesophase. All the oligomers and polymers studied show liquid crystalline properties and do not crystallize upon cooling. Most oligomers with around four repeating siloxane units, show a lamellar (layer) structure and antiferroelectric switching properties, the SmCPA phase. XRD shows that the layer spacings are hardly influenced by the length of the terminal tails. The oligomer prepared from the smallest olefinic precursor, having the shortest alkyl tail, shows an XRD pattern reminiscent of a columnar phase, although POM displays domains of opposite chirality, and no switching behaviour could be detected. The polymers with around 35 repeating siloxane units are liquid crystalline, but due to their high viscosity a thorough characterization of the liquid crystalline phases was impossible.  相似文献   

17.
Supramolecular side chain liquid crystalline polymers were prepared from poly(3-carboxypropylmethylsiloxane) (PSI100) and azobenzene-based derivatives through intermolecular hydrogen bonding between the carboxylic acid groups of PSI100 and the imidazole rings in the azobenzene-based derivatives. The presence of H-bonding was confirmed using FTIR spectroscopy. The polymeric complexes behave as liquid crystalline polymers and exhibit nematic mesophases identified on the basis of the observation of Schlieren textures. The mesogenic behaviour of these complexes was studied by polarizing optical microscopy and X-ray diffraction. The thermal behaviour of the complexes was investigated by differential scanning calorimetry. On increasing the spacer length, the transition temperatures initially increase. A further increase in spacer length, however, leads to a decrease in the transition temperatures. The electron donor-acceptor interaction between unlike mesogenic units in supramolecular copolymeric complexes helps to stabilize the mesophase.  相似文献   

18.
Supramolecular side chain liquid crystalline polymers were prepared from poly(3-carboxypropylmethylsiloxane) (PSI100) and azobenzene-based derivatives through intermolecular hydrogen bonding between the carboxylic acid groups of PSI100 and the imidazole rings in the azobenzene-based derivatives. The presence of H-bonding was confirmed using FTIR spectroscopy. The polymeric complexes behave as liquid crystalline polymers and exhibit nematic mesophases identified on the basis of the observation of Schlieren textures. The mesogenic behaviour of these complexes was studied by polarizing optical microscopy and X-ray diffraction. The thermal behaviour of the complexes was investigated by differential scanning calorimetry. On increasing the spacer length, the transition temperatures initially increase. A further increase in spacer length, however, leads to a decrease in the transition temperatures. The electron donor-acceptor interaction between unlike mesogenic units in supramolecular copolymeric complexes helps to stabilize the mesophase.  相似文献   

19.
Two series of vinyl‐terminated, side‐chain liquid‐crystalline polyethers containing 4,4′‐biphenyl and 2,6‐naphthalene moieties as mesogenic cores with several contents of vinyl crosslinkable groups were synthesized by chemically modifying poly(epichlorohydrin) with mixtures of saturated and vinyl‐terminated mesogenic acids. In most cases the degree of modification was over 90%. The polymers were characterized by chlorine analysis, IR and 1H and 13C NMR spectroscopies, viscometry, size exclusion chromatography/multi‐angle laser light scattering, and thermogravimetric analysis. The liquid‐crystal behavior of all the synthesized polymers was examined by differential scanning calorimetry, polarized optical microscopy (POM), and X‐ray diffraction on mechanically oriented samples. The crosslinking of most polymers was done by peroxide‐type initiators, which generally led to liquid‐crystal elastomers. The mesophase organization was maintained on the crosslinked materials, as confirmed by POM and X‐ray diffraction. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3384–3399, 2003  相似文献   

20.
《Liquid crystals》1997,22(6):669-677
The synthesis of side chain liquid crystalline polysiloxanes containing oligooxyethylene spacers and ( S )-2-methylbutyl 4-\[(4-oxybiphenyl-4-yl)carbonyloxy]-3-fluorobenzoate mesogenic side groups is presented. Differential scanning calorimetry, optical polarizing microscopy and X-ray diffraction measurements reveal liquid crystalline properties for all synthesized monomers and polymers. All three precursor olefinic monomers reveal cholesteric and smectic A phases. The olefinic monomer which contains two oligooxyethylene units in the spacer is the only one which reveals a twist grain boundary A phase and a blue phase, besides the cholesteric and smectic A phases. All three polysiloxanes present enantiotropic smectic A and chiral smectic C phases. The mesomorphic behaviours of the monomers and polymers are compared with those of the corresponding monomers and polymers without the lateral fluoro substituent. The results seem to demonstrate that incorporating a lateral fluoro substituent in the mesogenic cores of the monomers affects not only the mesophase thermal stability, but also the nature of the mesophases formed. However, incorporating a lateral fluoro substituent in the mesogenic cores of the polymers affects only the thermal stability of the mesophases formed. The lateral fluoro substituent has a more profound effect on the mesomorphic behaviour for the monomers than that for the polymers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号