首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Consider a Geo/Geo/1 retrial queue with working vacations and vacation interruption, and assume requests in the orbit try to get service from the server with a constant retrial rate. During the working vacation period, customers can be served at a lower rate. If there are customers in the system after a service completion instant, the vacation will be interrupted and the server comes back to the normal working level. We use a quasi birth and death process to describe the considered system and derive a condition for the stability of the model. Using the matrix-analytic method, we obtain the stationary probability distribution and some performance measures. Furthermore, we prove the conditional stochastic decomposition for the queue length in the orbit. Finally, some numerical examples are presented.  相似文献   

2.
讨论了有Bernoulli休假策略和可选服务的离散时间Geo/G/1重试排队系统.假定一旦顾客发现服务台忙或在休假就进入重试区域,重试时间服从几何分布.顾客在进行第一阶段服务结束后可以离开系统或进一步要求可选服务.服务台在每次服务完毕后,可以进行休假,或者等待服务下一个顾客.还研究了在此模型下的马尔可夫链,并计算了在稳态条件下的系统的各种性能指标以及给出一些特例和系统的随机分解.  相似文献   

3.
The so-called “Israeli queue” (Boxma et al. in Stoch Model 24(4):604–625, 2008; Perel and Yechiali in Probab Eng Inf Sci, 2013; Perel and Yechiali in Stoch Model 29(3):353–379, 2013) is a multi-queue polling-type system with a single server. Service is given in batches, where the batch sizes are unlimited and the service time of a batch does not depend on its size. After completing service, the next queue to be visited by the server is the one with the most senior customer. In this paper, we study the Israeli queue with retrials, where the system is comprised of a “main” queue and an orbit queue. The main queue consists of at most \(M\) groups, where a new arrival enters the main queue either by joining one of the existing groups, or by creating a new group. If an arrival cannot join one of the groups in the main queue, he goes to a retrial (orbit) queue. The orbit queue dispatches orbiting customers back to the main queue at a constant rate. We analyze the system via both probability generating functions and matrix geometric methods, and calculate analytically various performance measures and present numerical results.  相似文献   

4.
This paper investigates a batch arrival retrial queue with general retrial times, where the server is subject to starting failures and provides two phases of heterogeneous service to all customers under Bernoulli vacation schedules. Any arriving batch finding the server busy, breakdown or on vacation enters an orbit. Otherwise one customer from the arriving batch enters a service immediately while the rest join the orbit. After the completion of two phases of service, the server either goes for a vacation with probability p or may wait for serving the next customer with probability (1 − p). We construct the mathematical model and derive the steady-state distribution of the server state and the number of customers in the system/orbit. Such a model has potential application in transfer model of e-mail system.  相似文献   

5.
Two independent Poisson streams of jobs flow into a single-server service system having a limited common buffer that can hold at most one job. If a type- $i$ job ( $i=1,2$ ) finds the server busy, it is blocked and routed to a separate type- $i$ retrial (orbit) queue that attempts to re-dispatch its jobs at its specific Poisson rate. This creates a system with three dependent queues. Such a queueing system serves as a model for two competing job streams in a carrier sensing multiple access system. We study the queueing system using multi-dimensional probability generating functions, and derive its necessary and sufficient stability conditions while solving a Riemann–Hilbert boundary value problem. Various performance measures are calculated and numerical results are presented. In particular, numerical results demonstrate that the proposed multiple access system with two types of jobs and constant retrial rates provides incentives for the users to respect their contracts.  相似文献   

6.
Atencia  Ivan  Moreno  Pilar 《Queueing Systems》2004,48(1-2):5-21
We consider a discrete-time Geo/G/1 retrial queue in which the retrial time has a general distribution and the server, after each service completion, begins a process of search in order to find the following customer to be served. We study the Markov chain underlying the considered queueing system and its ergodicity condition. We find the generating function of the number of customers in the orbit and in the system. We derive the stochastic decomposition law and as an application we give bounds for the proximity between the steady-state distributions for our queueing system and its corresponding standard system. Also, we develop recursive formulae for calculating the steady-state distribution of the orbit and system sizes. Besides, we prove that the M/G/1 retrial queue with general retrial times can be approximated by our corresponding discrete-time system. Finally, we give numerical examples to illustrate the effect of the parameters on several performance characteristics.  相似文献   

7.
有Bernoulli休假和可选服务的M/G/1重试反馈排队模型   总被引:1,自引:0,他引:1  
考虑具有可选服务的M/G/1重试反馈排队模型,其中服务台有Bernoulli休假策略.系统外新到达的顾客服从参数为λ的泊松过程.重试区域只允许队首顾客重试,重试时间服从一般分布.所有的顾客都必须接受必选服务,然而只有其中部分接受可选服务.每个顾客每次被服务完成后可以离开系统或者返回到重试区域.服务台完成一次服务以后,可以休假也可以继续为顾客服务.通过嵌入马尔可夫链法证明了系统稳态的充要条件.利用补充变量的方法得到了稳态时系统和重试区域中队长分布.我们还得到了重试期间服务台处于空闲的概率,重试区域为空的概率以及其他各种指标.并证出在系统中服务员休假和服务台空闲的时间定义为广义休假情况下也具有随机分解特征.  相似文献   

8.
We consider a finite buffer capacity GI/GI/c/K-type retrial queueing system with constant retrial rate. The system consists of a primary queue and an orbit queue. The primary queue has \(c\) identical servers and can accommodate up to \(K\) jobs (including \(c\) jobs under service). If a newly arriving job finds the primary queue to be full, it joins the orbit queue. The original primary jobs arrive to the system according to a renewal process. The jobs have i.i.d. service times. The head of line job in the orbit queue retries to enter the primary queue after an exponentially distributed time independent of the length of the orbit queue. Telephone exchange systems, medium access protocols, optical networks with near-zero buffering and TCP short-file transfers are some telecommunication applications of the proposed queueing system. The model is also applicable in logistics. We establish sufficient stability conditions for this system. In addition to the known cases, the proposed model covers a number of new particular cases with the closed-form stability conditions. The stability conditions that we obtained have clear probabilistic interpretation.  相似文献   

9.
We consider a multi-server retrial queue with the Batch Markovian Arrival Process (BMAP). The servers are identical and independent of each other. The service time distribution of a customer by a server is of the phase (PH) type. If a group of primary calls meets idle servers the primary calls occupy the corresponding number of servers. If the number of idle servers is insufficient the rest of calls go to the orbit of unlimited size and repeat their attempts to get service after exponential amount of time independently of each other. Busy servers are subject to breakdowns and repairs. The common flow of breakdowns is the MAP. An event of this flow causes a failure of any busy server with equal probability. When a server fails the repair period starts immediately. This period has PH type distribution and does not depend on the repair time of other broken-down servers and the service time of customers occupying the working servers. A customer whose service was interrupted goes to the orbit with some probability and leaves the system with the supplementary probability. We derive the ergodicity condition and calculate the stationary distribution and the main performance characteristics of the system. Illustrative numerical examples are presented.  相似文献   

10.
有启动失败和可选服务的M/G/1重试排队系统   总被引:1,自引:0,他引:1  
考虑具有可选服务的M/G/1重试排队模型,其中服务台有可能启动失败.系统外新到达的顾客服从参数为λ的泊松过程.重试区域只允许队首顾客重试,重试时间服务一般分布.所有的顾客都必须接受必选服务,然而只有其中部分接受可选服务.通过嵌入马尔可夫链法证明了系统稳态的充要条件.利用补充变量的方法得到了稳态时系统和重试区域中队长分布.我们还得到重试期间服务台处于空闲的概率,重试区域为空的概率以及其他各种指标.并证出在把系统中服务台空闲和修理的时间定义为广义休假情况下也具有随机分解特征.  相似文献   

11.
This paper deals with the steady state behaviour of an Mx/G/1 queue with general retrial time and Bernoulli vacation schedule for an unreliable server, which consists of a breakdown period and delay period. Here we assume that customers arrive according to compound Poisson processes. While the server is working with primary customers, it may breakdown at any instant and server will be down for short interval of time. Further concept of the delay time is also introduced. The primary customer finding the server busy, down or vacation are queued in the orbit in accordance with FCFS (first come first served) retrial policy. After the completion of a service, the server either goes for a vacation of random length with probability p or may continue to serve for the next customer, if any with probability (1 − p). We carry out an extensive analysis of this model. Finally, we obtain some important performance measures and reliability indices of this model.  相似文献   

12.
An M[X]/G/1 retrial G-queue with single vacation and unreliable server is investigated in this paper. Arrivals of positive customers form a compound Poisson process, and positive customers receive service immediately if the server is free upon their arrivals; Otherwise, they may enter a retrial orbit and try their luck after a random time interval. The arrivals of negative customers form a Poisson process. Negative customers not only remove the customer being in service, but also make the server under repair. The server leaves for a single vacation as soon as the system empties. In this paper, we analyze the ergodical condition of this model. By applying the supplementary variables method, we obtain the steady-state solutions for both queueing measures and reliability quantities.  相似文献   

13.
Crowdsourcing is getting popular after a number of industries such as food, consumer products, hotels, electronics, and other large retailers bought into this idea of serving customers. In this paper, we introduce a multi-server queueing model in the context of crowdsourcing. We assume that two types, say, Type 1 and Type 2, of customers arrive to a c-server queueing system. A Type 1 customer has to receive service by one of c servers while a Type 2 customer may be served by a Type 1 customer who is available to act as a server soon after getting a service or by one of c servers. We assume that a Type 1 customer will be available for serving a Type 2 customer (provided there is at least one Type 2 customer waiting in the queue at the time of the service completion of that Type 1 customer) with probability \(p, 0 \le p \le 1\). With probability \(q = 1 - p\), a Type 1 customer will opt out of serving a Type 2 customer provided there is at least one Type 2 customer waiting in the system. Upon completion of a service a free server will offer service to a Type 1 customer on an FCFS basis; however, if there are no Type 1 customers waiting in the system, the server will serve a Type 2 customer if there is one present in the queue. If a Type 1 customer decides to serve a Type 2 customer, for our analysis purposes that Type 2 customer will be removed from the system as Type 1 customer will leave the system with that Type 2 customer. Under the assumption of exponential services for both types of customers we study the model in steady state using matrix analytic methods and establish some results including explicit ones for the waiting time distributions. Some illustrative numerical examples are presented.  相似文献   

14.
An M/G/1 retrial queueing system with disasters and unreliable server is investigated in this paper. Primary customers arrive in the system according to a Poisson process, and they receive service immediately if the server is available upon their arrivals. Otherwise, they will enter a retrial orbit and try their luck after a random time interval. We assume the catastrophes occur following a Poisson stream, and if a catastrophe occurs, all customers in the system are deleted immediately and it also causes the server’s breakdown. Besides, the server has an exponential lifetime in addition to the catastrophe process. Whenever the server breaks down, it is sent for repair immediately. It is assumed that the service time and two kinds of repair time of the server are all arbitrarily distributed. By applying the supplementary variables method, we obtain the Laplace transforms of the transient solutions and also the steady-state solutions for both queueing measures and reliability quantities of interest. Finally, numerical inversion of Laplace transforms is carried out for the blocking probability of the system, and the effects of several system parameters on the blocking probability are illustrated by numerical inversion results.  相似文献   

15.
This paper deals with an M / G / 1 queue with vacations and multiple phases of operation. If there are no customers in the system at the instant of a service completion, a vacation commences, that is, the system moves to vacation phase 0. If none is found waiting at the end of a vacation, the server goes for another vacation. Otherwise, the system jumps from phase 0 to some operative phase i with probability \(q_i\), \(i = 1,2, \ldots ,n.\) In operative phase i, \(i = 1,2, \ldots ,n\), the server serves customers according to the discipline of FCFS (First-come, first-served). Using the method of supplementary variables, we obtain the stationary system size distribution at arbitrary epoch. The stationary sojourn time distribution of an arbitrary customer is also derived. In addition, the stochastic decomposition property is investigated. Finally, we present some numerical results.  相似文献   

16.
We consider a closed queueing network, consisting of two FCFS single server queues in series: a queue with general service times and a queue with exponential service times. A fixed number \(N\) of customers cycle through this network. We determine the joint sojourn time distribution of a tagged customer in, first, the general queue and, then, the exponential queue. Subsequently, we indicate how the approach toward this closed system also allows us to study the joint sojourn time distribution of a tagged customer in the equivalent open two-queue system, consisting of FCFS single server queues with general and exponential service times, respectively, in the case that the input process to the first queue is a Poisson process.  相似文献   

17.
An M/G/1 retrial queueing system with additional phase of service and possible preemptive resume service discipline is considered. For an arbitrarily distributed retrial time distribution, the necessary and sufficient condition for the system stability is obtained, assuming that only the customer at the head of the orbit has priority access to the server. The steady-state distributions of the server state and the number of customers in the orbit are obtained along with other performance measures. The effects of various parameters on the system performance are analysed numerically. A general decomposition law for this retrial queueing system is established.  相似文献   

18.
19.
A discrete time Geo/Geo/1 queue with (mN)-policy is considered in this paper. There are three operation periods being considered: high speed, low speed service periods and idle periods. With double thresholds policy, the server begins to take a working vacation when the number of customers is below m after a service and there is one customer in the system at least. What’s more, if the system becomes empty after a service, the server will take an ordinary vacation. Otherwise, high speed service continues if the number of customers still exceeds m after a service. At the vacation completion instant, servers resume their service if the quantity of customers exceeds N. Vacations can also be interrupted when the system accumulate customers more than the prefixed threshold. Using the quasi birth-death process and matrix-geometric solution methods, we derive the stationary queue length distribution and some system characteristics of interest. Based on these, we apply the queue to a virtual channel switching system and present various numerical experiments for the system. Finally, numerical results are offered to illustrate the optimal (mN)-policy to minimize cost function and obtain practical consequence on the operation of double thresholds policy.  相似文献   

20.
王晓春  朱翼隽  陈燕 《运筹与管理》2006,15(6):54-59,77
本文考虑了一个具有可选服务、反馈的M/G/1重试排队系统。在假定重试区域中只有队首的顾客允许重试的情况下,重试时间具有一般分布时,得到了系统稳态的充分必要条件。求得稳态时系统队长和重试区域中队长分布及相关指标。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号