首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The perturbed-chain polar statistical associating fluid theory (PCP-SAFT) equation of state is applied to correlate phase equilibria for mixtures of hydrogen sulfide (H2S) and carbon dioxide (CO2) with alkanes, with aromatics, and with water over wide temperature and pressure ranges. The binary mixtures of H2S–methane and CO2–methane are studied in detail including vapor–liquid, liquid–liquid and fluid–solid phase equilibria. Very satisfying results were obtained for the binary mixtures as well as for the ternary mixture of H2S–CO2–methane using the (constant) interaction parameters of the binary pairs.  相似文献   

2.
A dynamic column breakthrough (DCB) apparatus was used to measure the capacity and kinetics of CH4 and N2 adsorption on zeolite H+-mordenite at temperatures in the range 243.8–302.9 K and pressures up to 903 kPa. Equilibrium adsorption capacities of pure CH4 and pure N2 were determined by these dynamic experiments and Langmuir isotherm models were regressed to these pure fluid data over the ranges of temperature and pressure measured. A linear driving force-based model of adsorption in a fixed bed was developed to extract the mass transfer coefficients (MTCs) for CH4 and N2 from the pure gas experimental data. The MTCs determined from single adsorbate experiments were used to successfully predict the component breakthroughs for experiments with equimolar CH4 + N2 gas mixtures in the DCB apparatus. The MTC of CH4 on H+-mordenite at 902 kPa was 0.013 s?1 at 302.9 K and 0.004 s?1 at 243.6 K. The MTC of N2 on H+-mordenite at 902 kPa was 0.011 s?1 at 302.9 K and 0.005 s?1 at 243.5 K. The values of the MTCs measured for each gas at a constant feed gas flow rate were observed to increase in a linear trend with the inverse of pressure. However, the apparent MTCs obtained at the lowest pressures studied (≈105 kPa) were systematically below this linear trend, because of the slightly longer residence time of helium in the mass spectrometer used to monitor effluent composition. Nevertheless, the pure fluid dynamic breakthrough data at these lowest pressures could still be reasonably well described using MTC values estimated from the linear trend. Furthermore, the results of dynamic breakthrough experiments with mixtures were all reliably predicted using the capacity and MTC correlations developed for the pure fluids.  相似文献   

3.
The adsorption of SO2 from pseudo binary mixtures with water and CO2 on hydrophobic zeolites (MFI and MOR type) was investigated using the breakthrough curve method. The SO2 and water breakthrough curves were compared with theoretical ones based on an axially dispersed plug flow through the column and the linear driving force rate equation. In addition, different semi-predictive multi-component equilibrium equations were used for the breakthrough modeling: Langmuir 1, Langmuir 2 and Langmuir-Freundlich extended models. The overall mass transfer coefficients were derived by matching theoretical with experimental breakthrough curves for single component systems, i.e., water vapor or SO2 in a carrier gas. They were also predicted from a simplified bi-porous adsorbent model and compared with experimentally derived values. The presence of CO2 species in ternary mixtures with water vapor and SO2, even at relatively high concentrations of 9 vol%, had no significant effect on the breakthrough behavior of the other two species. For that reason the CO2 species was ignored in the analysis of the resulting pseudo binary mixtures. The breakthrough model was solved by finite element orthogonal collocation method using the commercial software gPROMS. Both extended Langmuir 1 and Langmuir 2 based models gave reasonable predictions of the water and SO2 breakthrough curves for pseudo binary mixtures involving a mordenite sample for all water concentration levels used in this study (up to 3.5 vol%). However, the same models were successfully used to predict SO2 breakthrough curves for a MFI sample only at low water concentrations, i.e., 1.5 vol%. At the higher water levels both models failed to describe equilibrium behavior in the MFI sample due to the introduction of multi-layer adsorption in the interstices between small MFI-26 crystals.  相似文献   

4.
Adsorption equilibria of the gases CH4, N2, and CO2 and their binary and ternary mixtures on activated carbon Norit R1 Extra have been measured in the pressure range 0 P 6 MPa at T = 298 K. Pure gas adsorption equilibria were measured gravimetrically. Coadsorption data of the three binary mixtures CH4/N2, CH4/CO2, and CO2/N2 were obtained by the volume-gravimetric method. Isotherms of five ternary mixtures CH4/CO2/N2 were measured using the volumetric-chromatographic method. First, we present in a short overview the method and procedure of measurement. In a second part, the measured data of pressures, surface excess amounts adsorbed and absolute amounts adsorbed are presented and analyzed. In the last part of the paper the resulting pure gas adsorption data are correlated using a generalized dual-site Langmuir isotherm. Mixture adsorption can be predicted by this model using only pure component parameters with fair accuracy. Results are presented and discussed in several tables and figures.  相似文献   

5.
A thermodynamic model developed for CO2 and H2S solubilities in aqueous MDEA solution is extended to cover CO2 and H2S solubilities in aqueous DIPA solution, aqueous sulfolane-DIPA solution, and aqueous sulfolane-MDEA solution. The model makes use of the 2009 version of the electrolyte NRTL model for liquid phase activity coefficient calculations and the PC-SAFT equation of state for vapor phase fugacity coefficient calculations. The NRTL binary parameters for the molecule-electrolyte pairs required for the H2O-DIPA-CO2 ternary and the H2O-sulfolane-DIPA-CO2 quaternary are regressed against the solubility data of CO2 in aqueous DIPA solution and aqueous sulfolane-DIPA solution, respectively. The NRTL binary parameters for the molecule-electrolyte pairs required for the H2O-DIPA-H2S ternary and the H2O-sulfolane-DIPA-H2S quaternary are regressed against the solubility data of H2S in aqueous DIPA solution and aqueous sulfolane-DIPA solution simultaneously. The NRTL binary parameters for the electrolyte-electrolyte pairs involved in the H2O-DIPA-CO2-H2S quaternary are regressed against the solubility data of the acid gas mixtures in aqueous DIPA solution. Likewise, the NRTL binary parameters for the sulfolane-electrolyte pairs required for the H2O-sulfolane-MDEA-CO2 quaternary and the H2O-sulfolane-MDEA-H2S quaternary are regressed against the solubility data of the acid gases in aqueous sulfolane-MDEA solution. The predicted enthalpies of acid gas absorption are compared favorably with the literature data available for the H2O-DIPA-CO2 system, the H2O-DIPA-H2S system, and the H2O-sulfolane-MDEA-CO2 system.  相似文献   

6.
In comparison with the fast development of binary mixture separations, ternary mixture separations are significantly more difficult and have rarely been realized by a single material. Herein, a new strategy of tuning the gate-opening pressure of flexible MOFs is developed to tackle such a challenge. As demonstrated by a flexible framework NTU-65, the gate-opening pressure of ethylene (C2H4), acetylene (C2H2), and carbon dioxide (CO2) can be regulated by temperature. Therefore, efficient sieving separation of this ternary mixture was realized. Under optimized temperature, NTU-65 adsorbed a large amount of C2H2 and CO2 through gate-opening and only negligible amount of C2H4. Breakthrough experiments demonstrated that this material can simultaneously capture C2H2 and CO2, yielding polymer-grade (>99.99 %) C2H4 from single breakthrough separation.  相似文献   

7.
The aim of this work is to study the reactivity of a Ni-YSZ-based solid oxide fuel cell (SOFC) fueled with gaseous mixtures having the same composition as the syngas issued from a fixed-bed downdraft and staged gasification pilot. The syngas issued from the gasifier contains some ppm(v) of H2S, and in order to adapt the purification process, the influence of this compound on the Ni-YSZ-based SOFCs is evaluated at 600 and 850 °C. The influence of H2S depends on fuel composition, temperature but also of current density. In H2–N2 mixtures and only at 600 °C, a significant decrease of cell performances is observed for H2S?>?4.5 ppm(v). For H2–CO–CO2–N2 mixtures, the influence is more important since a small decrease of performance can be observed for 1 ppm(v) of H2S even at 850 °C. Nevertheless, at 600 °C, it is possible to avoid damage by limiting the current density. Aging experiments, realized at 750 °C, show that the influence of 1 and 2 ppm(v) of H2S is more important during the first 20 h and is reversible: at this temperature, after poisoning with 1 ppm(v) of H2S during 72 h, the cell recovers 91% of its initial power density after 100 h in pure hydrogen, and after subsequent poisoning with 2 ppm(v) of H2S during 77 h, the cell recovers 94% of its initial power density after 168 h in pure hydrogen.  相似文献   

8.
The phase diagram of the system N-methylmorpholine-N-oxide(NMMO)/H2O/cellulose has been measured at 80 °C by establishing a solubility map (observation of the mixtures under the microscope), by the analysis of coexisting phases and determining the critical point. These experiments manifest a continuous reduction of the two phase area existing for the subsystem H2O/cellulose upon the addition of NMMO, where a weight fraction of NMMO in the mixed solvent exceeding 75 wt% is required for Solucell 400 to reach the critical composition. The critical cellulose concentration is only 0.34 wt%, i.e., more than an order of magnitude lower than for the solutions of typical vinyl polymers in mixed solvents. All experimental observations can be well modeled on the basis of composition dependent binary interaction parameters by means of recently established mixing rules. For the subsystems H2O/cellulose and NMMO/water the corresponding data are known from independent earlier measurements. The adjustment of two parameters to the ternary phase diagram was required to obtain this information for NMMO/cellulose, the third binary subsystem.  相似文献   

9.
The statistical associating fluid theory equation of state (EoS) is employed in a time efficient way for the correlation and prediction of vapor–liquid equilibrium of the CO2 + H2O binary system for the temperature (10–100 °C) and pressure (1–600 bar) ranges suitable for simulation of CO2 geologic sequestration. The effective number of segments and energy parameter are correlated with the reduced temperature. Simple mixing rules are applied to obtain binary interaction parameters. Assigning a fixed H2O composition in the mixing rule makes the phase equilibrium calculations relatively fast compared to other EoS’s. The results obtained by the model used were found to be in satisfactory agreement with the literature data.  相似文献   

10.
A novel three‐dimensional microporous metal–organic framework Zn4L(DMA)4 ( UTSA‐33 , H8L=1,2,4,5‐tetra(5‐isophthalic acid)benzene, DMA=N,N′‐dimethylacetamide) with small pores of about 4.8 to 6.5 Å was synthesized and structurally characterized as a non‐interpenetrated (4,8)‐connected network with the flu topology (Schläfli symbol: (41261284)(46)2). The activated UTSA‐33 a exhibits highly selective separation of acetylene, ethylene, and ethane from methane with the adsorption selectivities of 12 to 20 at 296 K, which has been established exclusively by the sorption isotherms and simulated breakthrough experiments, thus methane can be readily separated from their binary and even ternary mixtures at room temperature.  相似文献   

11.
《Fluid Phase Equilibria》1986,28(3):265-281
Vetere, A., 1986. Vapor-liquid equilibria with supercritical gases calculated by the excess Gibbs energy method. Fluid Phase Equilibria, 28: 265–281.A thermodynamic method for vapor-liquid equilibria calculations of mixtures containing supercritical components is described. According to the proposed method the Raoult law is assumed as a reference point also for the supercritical gases, and the non-ideality of the liquid phase is represented by using the NRTL equation in the one parameter form.The vapor phase is described by applying the Redlich-Kwong equation. Literature data of 10 binary systems formed by N2, CH4, CO2, H2S and CH3OH are correlated by applying the new procedure. The binary interaction parameters calculated for these systems are used for the prevision of one ternary and two quaternary systems formed by the cited gas in methanol, which is an industrial solvent used for the purification of natural streams from the sour gases.Rules are given to describe the dependence on temperature of the binary interaction parameters.  相似文献   

12.
Experimental density data of the binary mixtures of N-methyldiethanolamine + (2-aminoethyl)ethanolamine and the ternary mixtures of N-methyldiethanolamine + (2-aminoethyl)ethanolamine + water were reported at atmospheric pressure over the entire composition range at temperatures from 283.15 to 363.15 K. Density measurements were performed using an Anton Paar digital vibrating U-tube densimeter. Excess molar volumes were calculated from the experimental data and correlated as the Redlich-Kister equation for the binary mixtures, and as the Nagata-Tamura equation for the ternary mixtures. Several empirical models were applied to predict the excess molar volumes of ternary mixtures from the corresponding binary mixture values. It indicates that the best agreement with the experimental data was achieved by the Redlich-Kister, Kohler, and Jacob-Fitzner models.  相似文献   

13.
The concentration range of transference number measurements with the Hittorf cell has been extended up to a total concentration of c T = 3.4 mol·dm?3 for the H2O + NaCl + MgCl2 ternary system at (298.15 ± 0.05) °C. This was achieved with a redesigned Hittorf cell, by dividing each of the anodic/cathodic compartments into two subcompartments: one with a low concentration of H2O + NaCl for the electrode reaction and another one in contact with the middle compartment with the ternary solution to be measured. Measurements of the transference numbers were also made for the corresponding H2O + NaCl and H2O + MgCl2 binary systems. The experimental details and the results are described.  相似文献   

14.
Experimental solubilities of diazepam in binary and ternary solvents of polyethylene glycols 200 and 400 with N-methyl pyrrolidone and water at T = 298.2 K are reported. The Jouyban–Acree model was used to fit solubility data of diazepam in the binary and ternary solvent mixtures (106 data points) in which the overall mean relative deviations (OMRD %) is 13.1 % and the prediction OMRD % is 31.7 %. The combined version of the Jouyban–Acree model with Hansen solubility parameters was used for fitting and predicting the solubility data and the OMRDs % are 10.0 and 20.8 %, respectively. Also, the previously proposed trained versions of the Jouyban–Acree model were used for predicting the reported data in this work and all results are listed in the tables. The density of the solute-free solvent mixtures were measured and employed to calculate the constants of the Jouyban–Acree model and then the densities of the saturated solutions were predicted.  相似文献   

15.
Summary The reversed-flow method for measurement of gas diffusion coefficients in binary mixtures is now extended to simultaneous determination of effective diffusion coefficients for each substance in a multicomponent gas mixture. The method is applied to six ternary mixtures, each consisting of two gaseous hydrocarbons and H2, He or N2. The results are in agreement with a limiting case of the Stefan-Maxwell equations.  相似文献   

16.
《Fluid Phase Equilibria》1999,154(2):261-284
Comprehensive phase diagrams of methanol/CHF3 and methanol/H2O/CHF3 mixtures over the temperature range of 25–100°C and pressure range of atmospheric to 340 atm are reported. Fluoroform is expected to be useful as an alternative to CO2 for enhancing the fluidity of liquid mixtures due to its high polarity and low viscosity. Therefore, these mixtures will be studied as mobile phases for enhanced-fluidity liquid chromatography and extraction. The phase behavior of methanol/CHF3 and methanol/H2O/CHF3 was compared to that of methanol/CO2 and methanol/H2O/CHF3. Fluoroform is markedly more miscible with methanol or methanol/H2O than is CO2. Data for methanol/CHF3 binary mixtures were also modeled by the Peng–Robinson equation of state. The correlation results showed that the PR equation of state with two temperature-independent binary parameters was capable of representing the experimental data over the entire temperature range with an average relative deviation within 6%.  相似文献   

17.
The adsorption properties of CO2, N2 and CH4 in all-silica zeolites were studied using molecular simulations. Adsorption isotherms for single components in MFI were both measured and computed showing good agreement. In addition simulations in other all silica structures were performed for a wide range of pressures and temperatures and for single components as well as binary and ternary mixtures with varying bulk compositions. The adsorption selectivity was analyzed for mixtures with bulk composition of 50:50 CO2/CH4, 50:50 CO2/N2, 10:90 CO2/N2 and 5:90:5 CO2/N2/CH4 in MFI, MOR, ISV, ITE, CHA and DDR showing high selectivity of adsorption of CO2 over N2 and CH4 that varies with the type of crystal and with the mixture bulk composition.  相似文献   

18.
Carbon capture and storage with porous materials is one of the most promising technologies to minimize CO2 release into the atmosphere. Here, we report a family of compartmentalized coordination polymers (CCPs) capable of capturing gas molecules in a selective manner based on two novel tetrazole-based ligands. Crystal structures have been modelled theoretically under the Density Functional Theory (DFT) revealing the presence of discrete voids of 380 Å3. Single gas adsorption isotherms of N2, CH4 and CO2 have been measured, obtaining a loading capacity of 0.6, 1.7 and 2.2 molecules/void at 10 bar and at 298 K for the best performing material. Moreover, they present excellent selectivity and regenerability for CO2 in mixtures with CH4 and N2 in comparison with other reported materials, as evidenced by dynamic breakthrough gas experiments. These frameworks are therefore great candidates for separation of gas mixtures in the chemical engineering industry.  相似文献   

19.
Densities (ρ) and viscosities (η) of ternary mixtures of 2-methylbutan-2-ol (1) + trichloroethylene (2) + acetonitrile (3) and the related binary mixtures of {2-methylbutan-2-ol (1) + trichloroethylene (2)}, {2-methylbutan-2-ol (1) + acetonitrile (3)}, and {trichloroethylene (2) + acetonitrile (3)} have been measured over the whole composition range at 298.15 K and at ambient pressure (81.5 kPa). Excess molar volumes $ V_{\text{m}}^{\text{E}} $ , viscosity deviations Δη, and excess Gibbs energies of activation ΔG *E were derived from the experimental data. The binary and ternary data of $ V_{\text{m}}^{\text{E}} $ , Δη, and ΔG *E for the binary and ternary mixtures were correlated as functions of the mole fraction by using the Redlich–Kister and the Cibulka equations. Kinematic viscosities of the binary mixtures were correlated by means of several semi-empirical equations to determine the fitting parameters and the SDs. The experimental results are analyzed to discuss the nature and strength of intermolecular interactions in these mixtures.  相似文献   

20.
Excess properties calculated from literature values of experimental density and viscosity in N,N-dimethylformamide (DMF) + methanol (Met) binary mixtures (from 303.15 to 323.15 K) can lead us to test different correlation equations as well as their corresponding derivative properties. Inspection of the Arrhenius activation energy (Ea) and the enthalpy (ΔH*) of activation of viscous flow shows very close values; here, we can define partial molar activation energies Ea1 and Ea2 for N,N-DMF and Met, respectively, along with their individual contribution separately. Correlation between the two Arrhenius parameters of viscosity in all compositions shows existence of main distinct interaction behaviours delimited by particular mole fractions in N,N-DMF. In addition, we add that correlation between Arrhenius parameters reveals interesting Arrhenius temperature that is closely related to the vaporisation temperature in the liquid vapour equilibrium, and the limiting corresponding partial molar properties can permit us to estimate the boiling points of the pure components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号