首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Adsorption of each component of natural gas on adsorbent prepared from petroleum coke was studied. At 25 °C and 3.5 MPa, adsorption capacity of the components of natural gas are as follows: C3H8, H2S(0.980) > CO2(0.691) > C2H6(0.160) > CH4(0.136) > N2(0.096) (g/g). For natural gas, adsorption capacity is 145.2 (mL/mL) and delivery capacity is 105.7 (mL/mL). One equation between adsorption capacity and boiling point of adsorbed gas was firstly generalized. The adsorption capacity of different component like O2, N2, CH4, C2H6, CO2, H2S on adsorbents were predicted using the equation. The results fit well with the experimental data. The equation has significance in predicting the adsorption capacity for any component of natural gas. Charge-discharge tests were conducted 10 times, the result indicates that natural gas has significantly worse reversibility in adsorption and desorption in the adsorbent than that of CH4. The contents of the components after 10 charge-discharge show that the adsorption capacity drop of natural gas is due to the irreversible adsorption of heavy or polar components like C3H8, H2S.  相似文献   

2.
Adsorption is one of the main mechanisms involved in the ECBM process, a technology where CO2 (or flue gas, i.e. a CO2/N2 mixture) is injected into a deep coal bed, with the aim of storing CO2 by simultaneously recovering CH4. A detailed understanding of the microscopic adsorption process is therefore needed, as the latter controls the displacement process. A lattice DFT model, previously extended to mixtures, has been applied to predict the competitive adsorption behavior of CO2, CH4 and N2 and of their mixtures in slit-shaped pores of 1.2 and 8 nm width. In particular, the effect of temperature, bulk composition and density on the resulting lattice pore profiles and on the lattice excess adsorption isotherms has been investigated. Important insights could be obtained; when approaching near critical conditions in the mesopores, a characteristic peak in the excess adsorption isotherm of CO2 appears. The same effect could be observed neither for the other gases nor in the micropores. Moreover, in the case of mixtures, a depletion of the less adsorbed species close to the adsorbent surface is observed, which eventually results in negative lattice excess adsorption at high bulk densities.  相似文献   

3.
4.
Although zeolites such as NaY and 13X adsorb CO2 much more than CO, the adsorption amount of CO2 and CO can be reversed if the zeolites are modified with CuCl. When zeolite NaY or 13X is mixed with CuCl and heated, high CO adsorption selectivity and capacity can be obtained. Isotherms show the adsorbents have CO capacity much higher than CO2. This is because CuCl has dispersed onto the surface of the zeolites to form a monolayer after the heat treatment and the monolayer dispersed CuCl can provide tremendous Cu(I) to selective adsorb CO and inhibit the CO2 adsorption. The monolayer dispersion of CuCl is confirmed by XRD and EXAFS studies. The loading of CuCl on the zeolites has a threshold below which the CuCl forms monolayer after heating and crystalline phase of CuCl can not be detected by XRD. An adsorbent of CuCl/NaY with CuCl content closed to the monolayer capacity shows very high CO selective adsorbability for CO2, N2, H2 and CH4. At temperature higher than room temperature, the adsorbent has even better CO selectivity for CO2. Using the adsorbent, a single-stage 4 beds PSA process, working at 70°C and 0.4 MPa to 0.013 MPa, can obtain CO product with purity >99.5% and yield >85%.  相似文献   

5.
A dynamic column breakthrough (DCB) apparatus was used to study the separation of CH4+N2 gas mixtures using two zeolites, H+-mordenite and 13X, at temperatures of (229.2 and 301.9)?K and pressures to 792.9?kPa. The apparatus is not limited to the study of dilute adsorbates within inert carrier gases because the instrumentation allows the effluent flow rate to be measured accurately: a method for correcting apparent effluent mass flow readings for large changes in effluent composition is described. The mathematical framework used to determine equilibrium adsorption capacities from the dynamic adsorption experiments is presented and includes a method for estimating quantitatively the uncertainties of the measured capacities. Dynamic adsorption experiments were conducted with pure CH4, pure N2 and equimolar CH4+N2 mixtures, and the results were compared with similar static adsorption experiments reported in the literature. The 13X zeolite had the greater adsorption capacity for both CH4 and N2. At 792?kPa the equilibrium capacities of the 13X zeolite increased from 2.13±0.14?mmol?g?1 for CH4 and 1.36±0.10?mmol?g?1 for N2 at 301.9?K to 3.97±0.19?mmol?g?1 for CH4 and 3.33±0.12?mmol?g?1 for N2 at 229.2?K. Both zeolites preferentially adsorbed CH4; however, the mordenite had a greater equilibrium selectivity of 3.5±0.4 at 301.9?K. Equilibrium selectivities inferred from pure fluid capacities using the Ideal Adsorbed Solution theory were limited by the accuracy of the literature pure fluid Toth models. Equilibrium capacities with quantitative uncertainties derived directly from DCB measurements without reference to a dynamic model should help increase the accuracy of mass transfer parameters extracted by the regression of such models to time dependent data.  相似文献   

6.
Adsorption isotherms for Ar, 02, N2, CO, CO2, CH4, and C2H6 on 4A zeolite at three or more temperatures were determined. An adsorption equation based on a 2-dimensional virial equation in terms of integer powers of the reciprocal of (A - σ) was shown to fit the equilibrium data accurately with three constants for C2H6 and two constants for other gases. Here A is the area per molecule and σ is the area of the molecule in a close-packed situation.Rates of adsorption and desorption of Ar, N2, CO, CH4, and C2H6 on 4A zeolite were determined over ranges of temperature in which the rate was moderately fast. Electron microscopy showed that the particles were cubes, and their size-distribution was determined. The conventional Fick's law rate equation for cubes was used to produce a generalized rate curve for the particle size distribution of the adsorbent. This curve was applied to the last 20% of the rate curve to obtain a diffusivity that could be related to the final amount adsorbed. This procedure also avoids the initial rapid portion of the adsorption, in which large variations of adsorbent temperature from that of the bath often occur.The diffusivities increased with amount adsorbed by a small extent for Ar and CH4 and by larger amounts for N2, CO, and C2H6. The activation energy for diffusion, as well as the heat of adsorption, were nearly independent of amount adsorbed for Ar and CH4, but these quantities decreased substantially with coverage for N2, CO, and C2H6. The dependence upon amount adsorbed of diffusivity and activation energy seemed related to the shape of the adsorption isotherm; those for Ar and CH4 were nearly linear, whereas isotherms for the other gases had large curvatures. The activation energy for diffusion varied with coverage in the same way as heat of adsorption.  相似文献   

7.
The development of materials with potential application for CO2 capture is a topic of great scientific interest. Activated carbons (AC) can be conveniently used as CO2 adsorbents thanks to their microporous structure and tunable chemical properties. In this work, two AC honeycomb monoliths were synthesized starting from African palm stones through activation either with H3PO4 or with ZnCl2 solution. Surface functionalization was performed in order to add nitrogen groups, aiming at an enhancement of CO2 adsorption capacity. This chemical modification was performed either with ammonia in gas phase or a with 30 % ammonium hydroxide aqueous solution on both AC monolith samples. The original and modified monoliths were characterized by N2 adsorption at 77 K, infrared spectroscopy, Boehm titration, and immersion calorimetry in benzene and water. CO2 adsorption on both raw and functionalized AC monoliths was evaluated in volumetric equipment at a temperature of 273 K and until 1 bar, and adsorption capacity ranging between 120 and 220 mgCO2 g AC ?1 was obtained. The experimental results indicated that both methods of chemical modification determined an increase in the content of superficial nitrogen groups and thus an increase in CO2 adsorption capacity, the treatment with ammonium hydroxide being slightly preferable.  相似文献   

8.
Adsorption data at high pressures provide information about properties of the adsorbent material and about the structure of the adsorbed phase. In order to obtain this information adsorption processes need to be measured in a wide pressure range and require careful experimental data handling. In this paper, an experimental installation with a magnetic suspension balance for the gravimetric measurement of adsorption equilibria data at pressures still inaccessible for this experimental technique will be presented. Using this instrument the adsorption data of He, CH4, N2 and Ar on a microporous activated carbon are measured at pressures up to 50 MPa at T = 298.15 K. The resulting data allow a critical discussion of the commonly used model for the volume of the adsorbent material (i.e. the Helium-volume). As a result of this, a new model for the volume of the adsorbed phase is proposed. This volume model allows to calculate a pressure dependent density of the adsorbed phase. The model and the resulting densities of the adsorbed phase are discussed concerning their physical sensitivity.  相似文献   

9.
Activated carbon (AC) supported CuCl (CuCl/AC) for ethylene/ethane separation has been prepared with CuCl2 as precursor by a solid-state dispersion method. The samples are characterized by inductively coupled plasma optical emission spectrometry, X-ray diffraction, N2 adsorption/desorption and X-ray photoelectron spectroscopy, and investigated for ethylene (C2H4) and ethane (C2H6) adsorptions. The characterization results reveal that CuCl2 supported on AC can be highly dispersed on the surfaces of AC support and completely converted to CuCl after activation at 543 K in N2. The resultant adsorbent displays high ethylene adsorption capacity, high C2H4/C2H6 adsorption selectivity and excellent reversibility. The adsorption isotherms of ethylene and ethane on CuCl/AC at temperatures up to 333 K can be well fitted by the Sips models, and the corresponding isosteric heats of adsorption are calculated from the Clausius–Clapeyron equation. The value of isosteric heat of adsorption suggests that the interaction of ethylene with CuCl/AC is between physisorption and chemisorption.  相似文献   

10.
The Isotope Exchange Technique (IET) was used to simultaneously measure pure and binary gas adsorption equilibria and kinetics (self-diffusivities) of CH4 and N2 on pelletized 4A zeolite. The experiment was carried out isothermally without disturbing the adsorbed phase. CH4 was selectively adsorbed over N2 by the zeolite because of its higher polarizability. The multi-site Langmuir model described the pure gas and binary adsorption equilibria fairly well at three different temperatures. The selectivity of adsorption of CH4 over N2 increased with increasing pressure at constant gas phase composition and temperature. This curious behavior was caused by the differences in the sizes of the adsorbates. The diffusion of CH4 and N2 into the zeolite was an activated process and the Fickian diffusion model described the uptake of both pure gases and their mixtures. The self-diffusivity of N2 was an order of magnitude larger than that for CH4. The pure gas self-diffusivities for both components were constants over a large range of surface coverages (0 < < 0.5). The self-diffusivities of CH4 and N2 from their binary mixtures were not affected by the presence of each other, compared to their pure gas self-diffusivities at identical surface coverages.  相似文献   

11.
Mixed Cu and Mg oxides on nitrogen-rich activated carbon (AC) from Nypha fruticans biomass were characterized and their CO2 adsorption performance was measured. Highly dispersed CuO and MgO nanoparticles on AC was obtained using an ultrasonic-assisted impregnation method. The optimum adsorbent is 5%CuO–25%MgO/AC having good surface properties of high surface area, pores volume and low particles agglomeration. The higher content of MgO of 5%CuO–25%MgO/AC adsorbent contributes to less metal carbide formation which increases their porosity, surface area and surface basicity. XPS analysis showed some amount of nitrogen content on the surface of the adsorbent which increased their surface basicity towards selective CO2 adsorption. The presence of moisture accelerated the CO2 chemisorption to form a hydroxyl layer on the surfaces. The 5%CuO–25%MgO/AC adsorbent successfully adsorbed CO2 via physisorption and chemisorption of 14.8 and 36.2 wt%, respectively. It was significantly higher than fresh AC with better selectivity to CO2.  相似文献   

12.
In this work, uranium adsorption from aqueous (waste) solution onto thermal and chemical modified bentonite (TCMB) has been studied. The relevant factors affecting uranium adsorption onto our TCMB adsorbent were studied. These factors involved contact time, initial uranium concentrations, pH, adsorption temperature, foreign ion and the effect adsorbent (TCMB) amount using synthetic solution. The theoretical capacity of TCMB adsorbent is about 29 mg/g TCMB. The optimum adsorption conditions were choiced. Uranium elution from the loaded TCMB adsorbent has been carried out using CH3COONa as an effective eluent. Uranium adsorption from Gattar liquid waste by TCMB adsorbent was carried out in columns. The low uranium adsorption efficiency (37.5 % of the theoretical capacity of TCMB) may be due to the adsorption competition between uranium and difference foreign ion present in the solution (as iron). More than 92 % of the loaded uranium amount on the TCMB adsorbent has been eluted using CH3COONa as an efficient eluent.  相似文献   

13.
利用硝酸钴与配体5,5''-di(1H-1,2,4-triazol-1-yl)-(1,1''-biphenyl)-2,2''-dicarboxylic acid (H2DTBDA)进行溶剂热反应,制备了一个结构新颖的金属有机骨架{[Co(DTBDA)]2·DMF·MeOH}n (FJI-H37)。FJI-H37不仅具有适合气体分子吸附的0.69 nm的微孔,还具有良好的热稳定性及有机溶剂容忍性。气体吸附测试表明FJI-H37不仅能从C2H2/CO2(体积比50:50)混合气中选择性吸附C2H2,还可以从CO2/N2(体积比15:85)和CO2/CH4(体积比50:50)混合气中选择性捕获CO2;固定床突破实验进一步证实了其高效的气体分离能力。  相似文献   

14.
Dispersion-corrected density functional theory method was performed to report on a high-performance adsorbent for removal of CO2 from the precombustion and natural gases. At first, the effect of Al atom impurity on the structural and electronic properties of B80 fullerene is studied. Then, the adsorption geometries and energies of gases (H2, CH4, or CO2) on the B80 and AlB79 (amphoteric adsorbents) are explored. The Al atom enhances reactivity of the cage toward the gases and the adsorption processes are more exothermic with low and high energy barriers for chemisorption of H2 and CO2, respectively. Stable chemisorption of CO2 on the AlB79 is validated by the high adsorption energy and large charge transfer, while the CH4 is just physically adsorbed on the AlB79. Further, the physisorbed gases can enhance field emission current of the AlB79 and in the continuous capturing of the gases, the magnetic moment of the cage is quenched. Furthermore, dependency of the electronic structure of the adsorbent on the gas adsorption is intensively studied. We suggest that the AlB79 could be a promising material for capture, storage, and separation of the gases and as a novel material for sustainable energy and sweetening process in the petroleum industry.  相似文献   

15.
Adsorption of N2, CH4, C2H6, C3H8, and their mixture on zeolite NaX was studied by the volumetric method under static conditions at 278 K in the pressure range from 0.1 to 0.8 MPa. Compressibility factors were calculated in order to take into account the nonideal character of the gas phase. Adsorption isotherms of individual gases and partial isotherms were obtained. The adsorption properties of gases in the adsorption of a mixture and its components were compared. The selectivity coefficient of adsorption of propane in the N2-CH4-C2H6-C3H8-NaX system was calculated, and its dependence on the total pressure was determined.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 4, pp. 839–841, April, 1996.  相似文献   

16.
Adsorption isotherms of H2S, CO2, and CH4 on the Si-CHA zeolite were measured over pressure range of 0–190 kPa and temperatures of 298, 323, and 348 K. Acid gases adsorption isotherms on this type of zeolite are reported for the first time. The isotherms follow a typical Type-I shape according to the Brunauer classification. Both Langmuir and Toth isotherms describe well the adsorption isotherms of methane and acid gases over the experimental conditions tested. At room temperature and pressure of 100 kPa, the amount of CO2 adsorption for Si-CHA zeolite is 29 % greater than that reported elsewhere (van den Bergh et al. J Mem Sci 316:35–45 (2008); Surf Sci Catal 170:1021–1027 (2007)) for the pure silica DD3R zeolite while the amounts of CH4 adsorption are reasonably the same. Si-CHA zeolite showed high ideal selectivities for acid gases over methane at 100 kPa (6.15 for H2S and 4.06 for CO2 at 298 K). Furthermore, H2S adsorption mechanism was found to be physical, and hence, Si-CHA can be utilized in pressure swing adsorption processes. Due to higher amount of carbon dioxide adsorbed and lower heats of adsorption as well as three dimensional channels of Si-CHA pore structure, this zeolite can remove acid gases from methane in a kinetic based process such as zeolite membrane.  相似文献   

17.
The adsorption and separation behaviors of CO2 and CH4 in new siliceous zeolites (IFO, JSR, OKO, SEW) were simulated using the Grand Canonical Monte Carlo method in the paper. The adsorption isotherms for pure components and binary mixtures of CO2 and CH4 in four siliceous zeolites were obtained. The adsorption thermodynamic properties including Gibb’s free energy change, enthalpy change and entropy change were investigated. The results demonstrate that the adsorbed amount of pure components increases with an increase in pressure, and larger pore volume and surface area are beneficial to improve the adsorption capacity. The adsorption amount of CO2 and CH4 in the JSR zeolite is 7.08 and 2.27 mmol g?1 at 1000 kPa, respectively. In view of the thermodynamic results, the new siliceous zeolites show a higher affinity for CO2. The adsorption capacities of CO2 in all zeolites were five times more than those of CH4 in binary mixtures based on the ratios of equilibrium adsorption capacity. Considering the adsorption uptake and selectivity for CO2/CH4, the JSR zeolite is a good candidate for the separation of CO2/CH4 at low pressure.  相似文献   

18.
Adsorption of n-alkanes (C7H16–C11H24), cyclohexane, benzene, CHCl3, CCl4, and ClCH2CH2Cl by polymethylsilsesquioxane [MeSi(OH)0.4O1.3] n was investigated by inverse gas chromatography in the Henry region. The adsorption isotherms are linear for all adsorbates. The standard changes in the thermodynamic parameters of adsorption were determined. The absence of specific selectivity with respect to aliphatic, cyclic, or aromatic hydrocarbons or chloroalkanes indicates that the adsorbent is chemically homogeneous.  相似文献   

19.
A dynamic column breakthrough (DCB) apparatus was used to measure the capacity and kinetics of CH4 and N2 adsorption on zeolite H+-mordenite at temperatures in the range 243.8–302.9 K and pressures up to 903 kPa. Equilibrium adsorption capacities of pure CH4 and pure N2 were determined by these dynamic experiments and Langmuir isotherm models were regressed to these pure fluid data over the ranges of temperature and pressure measured. A linear driving force-based model of adsorption in a fixed bed was developed to extract the mass transfer coefficients (MTCs) for CH4 and N2 from the pure gas experimental data. The MTCs determined from single adsorbate experiments were used to successfully predict the component breakthroughs for experiments with equimolar CH4 + N2 gas mixtures in the DCB apparatus. The MTC of CH4 on H+-mordenite at 902 kPa was 0.013 s?1 at 302.9 K and 0.004 s?1 at 243.6 K. The MTC of N2 on H+-mordenite at 902 kPa was 0.011 s?1 at 302.9 K and 0.005 s?1 at 243.5 K. The values of the MTCs measured for each gas at a constant feed gas flow rate were observed to increase in a linear trend with the inverse of pressure. However, the apparent MTCs obtained at the lowest pressures studied (≈105 kPa) were systematically below this linear trend, because of the slightly longer residence time of helium in the mass spectrometer used to monitor effluent composition. Nevertheless, the pure fluid dynamic breakthrough data at these lowest pressures could still be reasonably well described using MTC values estimated from the linear trend. Furthermore, the results of dynamic breakthrough experiments with mixtures were all reliably predicted using the capacity and MTC correlations developed for the pure fluids.  相似文献   

20.
First-principles calculations were firstly employed to investigate the adsorption of methanol on pristine and X-doped phosphorene (X=B, C, N and O). The N and O doping improved the adsorption of phosphorene with CH3OH gas molecule, while B and C doping were almost not beneficial.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号