首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
First heterometal-organic single source precursors for NaYF(4) nanomaterials as a host matrix for up-conversion emission are reported. These novel heterobimetallic derivatives NaY(TFA)(4)(diglyme) (1), [Na(triglyme)(2)][Y(2)(TFA)(7)(THF)(2)] (2) and Na(2)Y(TFA)(5)(tetraglyme) (3) (TFA = trifluoroacetate), which were fully characterized by elemental analysis, FT-IR and (1)H NMR spectroscopy, TG-DTA data as well as single crystal X-ray structures, are advantageous in terms of being anhydrous and having lower decomposition temperatures in comparison to the homometallic precursor Y(TFA)(3)(H(2)O)(3). In addition, they also contain chelating glyme ligands, which act as capping reagents during decomposition to control the NaYF(4) particle size and render them monodisperse in organic solvents. On decomposition in 1-octadecene, the molecular derivatives 1 and 3 are converted, in the absence of any surfactant or capping reagent, to cubic NaYF(4) nanocrystals at significantly lower temperatures (below 250 °C). At higher temperature, a mixture of the cubic and hexagonal phases was obtained, the relative ratio of the two phases depending on the reaction temperature. A pure hexagonal phase, which is many folds more efficient for UC emission than the cubic phase, was obtained by calcining nanocrystals of mixed phase at 400 °C. In order to co-dope this host matrix with up-converting lanthanide cations, analogous complexes NaLn(TFA)(4)(diglyme) [Ln = Er (4), Tm (5), Yb (6)] and Na(2)Ln(TFA)(5)(tetraglyme) [Ln = Er (7), Yb (8)] were also prepared and characterized. The decomposition in 1-octadecene of suitable combinations and appropriate molar ratios of these yttrium, ytterbium and erbium/thulium derivatives gave cubic and/or hexagonal NaYF(4): Yb(3+), Er(3+)/Tm(3+) nanocrystals (NCs) capped by diglyme or tetraglyme ligands, which were characterized by IR, TG-DTA data, EDX analysis and TEM studies. Surface modification of these NCs by ligand exchange reactions with poly acrylic acid (PAA) and polyethyleneglycol (PEG) diacid 600 was also carried out to render them water soluble. The THF solutions of suitable combinations of the diglyme derivatives were also used to elaborate the thin films of NaYF(4):Yb(3+), Er(3+)/Tm(3+) on a glass or Si wafer substrate by spin coating. The multicolour up-conversion fluorescence was successfully realized in the Yb(3+)/Er(3+) (green/red) and Yb(3+)/Tm(3+) (blue/violet) co-doped NaYF(4) nanoparticles and thin films, which demonstrates that they are promising UC nanophosphors of immense practical interest. The up-conversion excitation pathways for the Er(3+)/Yb(3+) and Tm(3+)/Yb(3+) co-doped materials are discussed.  相似文献   

2.
M Zhang  A Zhao  D Li  H Sun  D Wang  H Guo  Q Gao  Z Gan  W Tao 《The Analyst》2012,137(19):4584-4592
This paper reports the synthesis of a new class of NaLnF(4)-Ag (Ln = Nd, Sm, Eu, Tb, Ho) hybrid nanorice and its application as a surface-enhanced Raman scattering (SERS) substrate in chemical analyses. Rice-shaped NaLnF(4) nanoparticles as templates are prepared by a modified hydrothermal method. Then, the NaLnF(4) nanorice particles are decorated with Ag nanoparticles by magnetron sputtering method to form NaLnF(4)-Ag hybrid nanostructures. The high-density Ag nanogaps on NaLnF(4) can be obtained by the prolonging sputtering times or increasing the sputtering powers. These nanogaps can serve as Raman 'hot spots', leading to dramatic enhancement of the Raman signal. The NaLnF(4)-Ag hybrid nanorice is found to be robust and is an efficient SERS substrate for the vibrational spectroscopic characterization of molecular adsorbates; the Raman enhancement factor of Rhodamine 6G (R6G) absorbed on NaLnF(4)-Ag nanorice is estimated to be about 10(13). Since the produced NaLnF(4)-Ag hybrid nanorice particles are firmly fastened on a silicon wafer, they can serve as universal SERS substrates to detect target analytes. We also evaluate their SERS performances using 4-mercaptopyridine (Mpy), and 4-mercaptobenzoic acid (MBA) molecules, and the detection limit for Mpy and MBA is as low as 10(-12) M and 10(-10) M, respectively, which meets the requirements of the ultratrace detection of analytes. This simple and highly efficient approach to the large-scale synthesis of NaLnF(4)-Ag nanorice with high SERS activity and sensitivity makes it a perfect choice for practical SERS detection applications.  相似文献   

3.
To develop NaYF(4) as bulk luminescence material, transparent glass ceramics containing Er(3+): NaYF(4) nanocrystals were fabricated for the first time, and the influences of heat-treatment temperature and Er(3+) doping level on their upconversion luminescence were investigated. With increasing heating temperature, the upconversion intensity enhanced accordingly, attributing to the incorporation of more Er(3+) into the grown NaYF(4). Notably, when the heating temperature reached 650 degrees C, the upconversion intensity augmented drastically due to the occurrence of phase transition from the cubic NaYF(4) to the hexagonal one. Interestingly, for the samples heat-treated at 620 degrees C, when the Er(3+) doping level was increased from 0.05 to 2.0 mol %, the upconversion emission was whole-range tunable from monochromatic green to approximately monochromatic red, which could be mainly attributed to the cross-relaxation between Er(3+) ions. The excellent optical properties and its convenient, low-cost synthesis of the present glass ceramic imply that it is an excellent substitution material for the unobtainable bulk NaYF(4) crystal, potentially applicable in many fields.  相似文献   

4.
Li X  Gai S  Li C  Wang D  Niu N  He F  Yang P 《Inorganic chemistry》2012,51(7):3963-3971
Three types of high-quality, monodisperse lanthanide fluoride colloidal nanocrystals (NCs) including LnF(3) (Ln = La-Pr), NaLnF(4) (Ln = Sm-Er), and Na(5)Ln(9)F(32) (Ln = Tm-Lu) with two crystal phases (hexagonal and cubic) and a rich variety of morphologies have been synthesized in high boiling organic solvents oleic acid and 1-octadecene, via a thermal decomposition pathway. The as-synthesized NCs were well characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), Fourier transform infrared spectroscopy (FT-IR), and photoluminescence (PL) spectra, respectively. It is found that the as-synthesized NCs consist of monodisperse nanoparticles with diverse shapes and narrow size distribution, which can easily disperse in nonpolar cyclohexane solvent. Additionally, a possible mechanism of NC nucleation and growth has been proposed. The results reveal that the formation of monodisperse NCs closely correlates with the inherent nature of lanthanide series from La to Lu. Under 980 nm NIR excitation, as-synthesized Yb(3+)/Ln(3+) (Ln = Er, Tm, Ho)-doped NaGdF(4) and Na(5)Lu(9)F(32) colloidal NCs show the respective characteristic up-conversion (UC) emissions of Er(3+), Tm(3+), and Ho(3+), which are promising for applications in biolabels, bioimaging, displays, and other optical technologies.  相似文献   

5.
Well defined, pure hexagonal-phased NaYF(4):Yb(3+),Er(3+)/Tm(3+) microtubes and microrods were first prepared by a facile and mass production molten salt method without using any surfactant, which offers a new alternative in synthesizing such materials and opens the possibility to meet the increasing commercial demand.  相似文献   

6.
Liang X  Wang X  Zhuang J  Peng Q  Li Y 《Inorganic chemistry》2007,46(15):6050-6055
In this article, branched NaYF(4) nanocrystals have been successfully synthesized via a simple hydrothermal method. On the basis of the analysis of HRTEM and TEM images, the growth modes of the branched structure and further branching behavior have been proposed. The up- and down-conversion luminescence of branched NaYF(4):Er(3+)/Yb(3+) and NaYF(4):Eu(3+) have been characterized. Multiarmed NaYF(4) phosphors can be introduced into polystyrene to form composite luminescent polymers because of its special geometrical shape. In conclusion, the luminescent branched particles should be of wide potential application as building blocks in the future nanoscience and nanotechnology.  相似文献   

7.
Song Y  You H  Huang Y  Yang M  Zheng Y  Zhang L  Guo N 《Inorganic chemistry》2010,49(24):11499-11504
Gd(2)O(2)S:Ln(3+) (Ln = Eu, Tb) submicrospheres were successfully prepared through a facile and mild solvothermal method followed by a subsequent heat treatment. X-ray diffraction (XRD) results demonstrate that all the diffraction peaks of the samples can be well indexed to the pure hexagonal phase of Gd(2)O(2)S. The energy dispersive spectroscopy (EDS), element analysis, and FT-IR results show that the precursors are composed of the Gd, Eu, O, S, C, H, and N elements. The scanning electron microscopy (SEM) and transmission electron microscopy (TEM) results show that these spheres are actually composed of randomly aggregated nanoparticles. The formation mechanism for the Gd(2)O(2)S:Ln(3+)(Ln = Eu, Tb) spheres has been proposed on an isotropic growth mechanism. Under ultraviolet excitation, Gd(2)O(2)S:Ln(3+)(Ln = Eu, Tb) spheres show red and green emission corresponding to the (5)D(0)→(7)F(2) transition of the Eu(3+) ions and the (5)D(4)→(7)F(5) transition of the Tb(3+) ions. Furthermore, this synthetic route may have potential applications for fabricating other lanthanide oxysulfides.  相似文献   

8.
Crystal structures of the NaLnF(4) materials (Ln = La, Ce, Pr, Nd, Sm or Gd) were studied with synchrotron single-crystal and powder diffraction. The materials with Ln = La, Ce, Nd, Sm and Gd have the average β structure (P6[combining macron], Z = 1) with partial ordering of the cations. A new type of a superstructure due to ordering of the cations and vacancies was found in NaPrF(4) (P3, Z = 6). It could be described using the group-subgroup relationships P6[combining macron]?P3. Our observations suggest that the β structure is unstable and that the ordering is a slow process at ambient conditions. Upon compression, β-NaNdF(4), β-NaGdF(4) and the superstructure NaPrF(4) are stable to at least 8 GPa with no evidence for any pressure-induced disorder-order phenomena.  相似文献   

9.
One-dimensional Ca(4)Y(6)(SiO(4))(6)O: Ln(3+) (Ln=Eu, Tb) microfibers were fabricated by a simple and cost-effective electrospinning method. X-ray diffraction (XRD) pattern and high-resolution transmission electron microscopy (HRTEM) confirmed that the fibers were composed of hexagonal Ca(4)Y(6)(SiO4)(6)O phase. Thermogravimetric and differential scanning calorimetry (TG-DSC) results showed that the Ca(4)Y(6)(SiO4)(6)O phase began to crystallize at 740°C. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) results indicated that the diameter of as-prepared microfibers ranged from 390 to 900 nm and the diameter of the microfibers annealed at 1000°C ranged from to 120 to 260 nm. Under ultraviolet and low-voltage electron beams (3-5 kV) excitation, the Ca(4)Y(6)(SiO(4))(6)O: Ln(3+) (Ln=Eu, Tb) samples showed the red and green emission, corresponding to (5)D(0)→(7)F(2) transition of Eu(3+) and (5)D(4)→(7)F(5) transition of Tb(3+), respectively.  相似文献   

10.
A new strategy of synthesizing hexagonal upconversion NaYF(4) at low temperature (down to 130 °C) based on Ti(4+) doping-induced cubic-to-hexagonal phase transition in a liquid-solid-solution reaction system is offered.  相似文献   

11.
LaF3微米晶的晶相(斜方相和六角相)及其上转换发光光谱可以通过精确调节Yb3+的摩尔掺杂浓度来控制。利用简单的水热法合成了Yb3+和Tm3+共掺杂的LaF3,YF3和NaYF4三种不同基质的氟化物纳米晶。XRD分析表明,当Tm3+的掺杂浓度不变,仅Yb3+的摩尔掺杂浓度从10%提高到20%,就可以使基质结构由六角相过渡到斜方相。实验结果表明,具有较大离子半径的稀土离子由于增强的偶极化率,更容易使电子云产生畸变,有利于基质斜方相结构的形成。  相似文献   

12.
One-dimensional La(9.33)(SiO(4))(6)O(2): Ln(3+) (Ln = Ce, Eu, Tb) microfibers were fabricated by a simple and cost-effective electrospinning method. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), photoluminescence (PL) and low voltage cathodoluminescence (CL) as well as kinetic decay were used to characterize the resulting samples. SEM and TEM results indicated that the diameter of the microfibers annealed at 1000 °C for 3 h was 200-245 nm. The microfibers were further composed of fine and closely linked nanoparticles. La(9.33)(SiO(4))(6)O(2): Ln(3+) (Ln = Ce, Eu, Tb) phosphors showed the characteristic emission of Ce(3+) (5d → 4f), Eu(3+) ((5)D(0)→(7)F(J)) and Tb(3+) ((5)D(3,4)→(7)F(J)) under ultraviolet excitation and low-voltage electron beams (3-5 kV) excitation. An energy transfer from Ce(3+) to Tb(3+) was observed in the La(9.33)(SiO(4))(6)O(2): Ce(3+), Tb(3+) phosphor under ultraviolet excitation and low-voltage electron beam excitation. Luminescence mechanisms were proposed to explain the observed phenomena. Blue, red and green emission can be realized in La(9.33)(SiO(4))(6)O(2): Ln(3+) (Ln = Ce, Eu, Tb) microfibers by changing the doping ions. So the La(9.33)(SiO(4))(6)O(2): Ln(3+) (Ln = Ce, Eu, Tb) phosphors have potential applications in full-color field emission displays.  相似文献   

13.
Complete phase transition from hexagonal LnF(3) (Ln(3+) = La(3+), Ce(3+), Pr(3+)) to monodisperse ultrasmall (~7 nm) cubic Ln(0.8)M(0.2)F(2.8) (M(2+) = Ca(2+), Sr(2+), Ba(2+)) disordered solid solution nanocubes was successfully achieved through alkaline-earth doping, which induced great intensification of the near-infrared to visible upconversion emissions of the optically active rare earth ions.  相似文献   

14.
Li C  Quan Z  Yang J  Yang P  Lin J 《Inorganic chemistry》2007,46(16):6329-6337
beta-NaYF4:Ln3+ (Ln = Eu, Tb, Yb/Er, and Yb/Tm) hexagonal microprisms with remarkably uniform morphology and size have been synthesized via a facile hydrothermal route. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), and photoluminescence (PL) spectra as well as kinetic decays were used to characterize the samples. It is found that sodium citrate as a shape modifier introduced into the reaction system plays a critical role in the shape evolution of the final products. Furthermore, the shape and size of the products can be further manipulated by adjusting the molar ratio of citrate/RE3+ (RE represents the total amount of Y3+ and the doped rare earth elements such as Eu3+, Tb3+, Yb3+/Er3+, or Yb3+/Tm3+). Under the excitation of 397 nm ultraviolet light, NaYF4:xEu3+ (x = 1.5, 5%) shows the emission lines of Eu3+ corresponding to 5D0-3 --> 7FJ (J = 0-4) transitions from 400 to 700 nm (whole visible spectral region) with different intensity, resulting in yellow and red down-conversion (DC) light emissions, respectively. When doped with 5% Tb3+ ions, the strong DC fluorescence corresponding to 5D4 --> 7FJ (J = 6, 5, 4, 3) transitions with 5D4 --> 7F5 (green emission at 544 nm) being the most prominent group that has been observed. In addition, under 980 nm laser excitation, the Yb3+/Er3+- and Yb3+/Tm3+-codoped beta-NaYF4 samples exhibit bright green and whitish blue up-conversion (UC) luminescence, respectively. The luminescence mechanisms for the doped lanthanide ions were thoroughly analyzed.  相似文献   

15.
Xie M  Tao Y  Huang Y  Liang H  Su Q 《Inorganic chemistry》2010,49(24):11317-11324
The VUV-vis spectroscopic properties of Tb(3+) activated fluoro-apatite phosphors Ca(6)Ln(2-x)Tb(x)Na(2)(PO(4))(6)F(2) (Ln = Gd, La) were studied. The results show that phosphors Ca(6)Gd(2-x)Tb(x)Na(2)(PO(4))(6)F(2) with Gd(3+) ions as sensitizers have intense absorption in the VUV range. The emission color of both phosphors can be tuned from blue to green by changing the doping concentration of Tb(3+) under 172 nm excitation. The visible quantum cutting (QC) via cross relaxation between Tb(3+) ions was observed in cases with and without Gd(3+). Though QC can be realized in phosphors Ca(6)La(2-x)Tb(x)Na(2)(PO(4))(6)F(2), we found that Gd(3+)-containg phosphors have a higher QC efficiency, confirming that the Gd(3+) ion indeed plays an important role during the quantum cutting process. In addition, the energy transfer process from Gd(3+) to Tb(3+) as well as (5)D(3)-(5)D(4) cross relaxation was investigated and discussed in terms of luminescence spectra and decay curves.  相似文献   

16.
This paper presents a feasible and efficacious procedure to synthesize polystyrene/upconversion nanocrystals (PS/UCNCs) nanocomposite spheres with raspberry-like structure via an in situ dispersion polymerization technique. During this process, polyacrylic acid (PAA) as stabilizer plays the key role in adsorbing UCNCs, including NaYF(4):Yb(3+)-Er(3+), NaYF(4):Yb(3+)-Tm(3+) and NaYF(4):Yb(3+)-Ho(3+) onto the PS surfaces. TEM and SEM images confirmed the raspberry-like morphology of the obtained nanocomposite spheres. The effect of synthetic conditions, for instances, PAA amount, type and concentration of UCNCs on the structure and fluorescence of the PS/UCNCs nanocomposite spheres were studied in detail.  相似文献   

17.
The crystal structures of ternary Ln(DBM)(3)phen complexes (DBM = dibenzoylmethane, phen = 1,10-phenanthroline, and Ln = Nd, Yb) and their in situ syntheses via the sol-gel process are reported. The properties of the Ln(DBM)(3)phen complexes and their corresponding Ln(3+)/DBM/phen-co-doped luminescent hybrid gels obtained via an in situ method (Ln-D-P gel) have been studied. The results reveal that the lanthanide complexes are successfully in situ synthesized in the corresponding Ln-D-P gels. Both Ln(DBM)(3)phen complexes and Ln-D-P gels display sensitized near-infrared (NIR) luminescence upon excitation at the maximum absorption of the ligands, which contributes to the efficient energy transfer from the ligands to the Ln(3+) ions (Ln = Nd, Yb), an antenna effect. The radiative properties of the Nd(3+) ion in a Nd-D-P gel are discussed using Judd-Ofelt analysis, which indicates that the (4)F(3/2) --> (4)I(11/2) transition of the Nd(3+) ion in the Nd-D-P gel can be considered as a possible laser transition.  相似文献   

18.
Monodisperse water-soluble hexagonal phase Ln(3+) -doped NaGdF(4) upconverting nanocrystals (UCNCs) have been successfully fabricated by means of a fast, facile, and environmentally friendly microwave-assisted route with polyethylenimine as the surfactant. Fine-tuning of the UC emission from visible to near-IR and finally to white light has been achieved. Furthermore, studies of the magnetic resonance imaging as well as the magnetization (magnetization-magnetic field curves) and the targeted recognition properties of FA-coupled amine-functionalized NaGdF(4) @SiO(2) UCNCs indicate that the obtained NaGdF(4) UCNCs can be potential candidates for dual-mode optical/magnetic bioapplications.  相似文献   

19.
The vacuum-ultraviolet (VUV) spectroscopic properties of undoped and Tb(3+)-doped borates Ba(3)Ln(BO(3))(3) (Ln = Lu and Gd) with different crystal structures were investigated by using synchrotron radiation. Ba(3)Lu(BO(3))(3) (BLB) crystallizes in a hexagonal structure, whereas Ba(3)Gd(BO(3))(3) (BGB) crystallizes in a trigonal structure. The maximum host absorption for BLB and BGB was found to locate at ~179 and ~195 nm, respectively. Upon host excitation, BLB exhibits an intrinsic broad UV emission centered at 339 nm, which is attributed to the recombination of self-trapped excitons that may presumably be associated with band-gap excitations or molecular transitions within the BO(3)(3-) group. In contrast to BLB, no broad emission but line emission ascribed to a Gd(3+)(6)P(J)-(8)S(7/2) transition was observed in the emission spectrum of BGB. Upon doping of Tb(3+) ions into the hosts of BLB and BGB, an efficient energy transfer from the host excitations to Tb(3+) via host/Gd(3+) emission was observed, showing that host sensitization of Tb(3+) occurs in these rare-earth borates.  相似文献   

20.
The first optical sensor for Cu(II) detection, with upconverting luminescent nanoparticles as an excitation source, showing high selectivity and good linear Stern-Volmer characteristics, has been achieved through a fluorescence resonance energy transfer (FRET) process between NaYF(4):Yb(3+)/Er(3+) and RB-hydrazide. The sensing mechanism is then discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号