首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, aluminum flame analysis was researched in order to develop a measurement method for high-energy-density metal aluminum dust cloud combustion, and the flame temperature and UV-VIS-IR emission spectra were precisely measured using a spectrometer. Because the micron-sized aluminum flame temperature was higher than 2 400 K, Flame temperature was measured by a non-contact optical technique, namely, a modified two-color method using 520 and 640 nm light, as well as by a polychromatic fitting method. These methods were applied experimentally after accurate calibration. The flame temperature was identified to be higher than 2 400 K using both methods. By analyzing the emission spectra, we could identify AlO radicals, which occur dominantly in aluminum combustion. This study paves the way for realization of a measurement technique for aluminum dust cloud combustion flames, and it will be applied in the aluminum combustors that are in development for military purposes.  相似文献   

2.
In this study, aluminum flame analysis was researched in order to develop a measurement method for high-energy-density metal aluminum dust cloud combustion, and the flame temperature and UV-VIS-IR emission spectra were precisely measured using a spectrometer. Because the micron-sized aluminum flame temperature was higher than 2 400 K, Flame temperature was measured by a non-contact optical technique, namely, a modified two-color method using 520 and 640 nm light, as well as by a polychromatic fitting method. These methods were applied experimentally after accurate calibration. The flame temperature was identified to be higher than 2 400 K using both methods. By analyzing the emission spectra, we could identify AlO radicals, which occur dominantly in aluminum combustion. This study paves the way for realization of a measurement technique for aluminum dust cloud combustion flames, and it will be applied in the aluminum combustors that are in development for military purposes.  相似文献   

3.
A premixed methane–air bunsen-type flame is seeded with micron-sized (d32 = 5.6 μm) atomized aluminum powder over a wide range of solid fuel concentrations. The burning velocities of the resulting two-phase hybrid flame are determined using the total surface area of the inner flame cone and the known volumetric flow rate, and spatially resolved flame spectra are obtained with a spectral scanning system. Flame temperatures are derived through polychromatic fitting of Planck’s law to the continuous part of the spectrum. It is found that an increase in the solid fuel concentration changes the aluminum combustion regime from low temperature oxidation to full-fledged flame front propagation. For stoichiometric methane–air mixtures, the transition occurs in the aluminum concentration range of 140–220 g/m3 and is manifested by the appearance of AlO sub-oxide bands and an increase in the flame temperature to 2500 K. The flame burning velocity is found to decrease only slightly with an increase in aluminum concentration, in contrast to the rapid decrease in flame speed, followed by quenching, that is observed for flames seeded with inert SiC particles. The observed behavior of the burning velocity and flame temperature leads to the conclusion that intense aluminum combustion in a hybrid flame only occurs when the flame front propagating through the aluminum suspension is coupled to the methane–air flame.  相似文献   

4.
Modes of particle combustion in iron dust flames   总被引:1,自引:0,他引:1  
The so-called argon/helium test is proposed to identify the combustion mode of particles in iron dust flames. Iron powders of different particle sizes varying from 3 to 34 μm were dispersed in simulated air compositions where nitrogen was replaced by argon and helium. Due to the independence of the particle burning rate on the oxygen diffusivity in the kinetic mode, the ratio between the flame speeds in helium and argon mixtures is expected to be smaller if the particle burning rate is controlled by reaction kinetics rather than oxygen diffusion. Experiments were performed in a reduced-gravity environment on a parabolic flight aircraft to prevent particle settling and buoyancy-driven disruption of the flame. Uniform suspensions of the iron powders were produced inside glass tubes and a flame was initiated at the open end of the tube. Quenching plate assemblies of various channel widths were installed inside the tube and pass or quench events were used to measure the quenching distance. Flame propagation was recorded by a high-speed digital camera and spectral measurements were used to determine the temperature of the condensed emitters in the flame. The measured flame speeds and quenching distances were in good agreement with previously developed one-dimensional, dust flame model where the particles are assumed to burn in a diffusive mode and heat losses are described on a volumetric basis. However, a significant drop of the ratio of flame speeds in helium and argon mixtures was observed for finer 3 μm particles and was attributed to a transition from the combustion controlled by diffusion for larger particles to kinetically controlled burning of micron-size particles. In helium mixtures, the lower flame temperatures measured in suspensions of fine particles in comparison to larger particles reinforces this assumption.  相似文献   

5.
Nano-sized titanium oxide particles were synthesized in a stationary, laminar, premixed, stagnation flame burning an ethylene–oxygen–argon mixture at an equivalence ratio of 0.36 under the atmospheric pressure. The titanium precursor, titanium tetraisopropoxide (TTIP), was fed into the flame by a carrier argon flow through a heated TTIP bath. Particles synthesized in this flame were characterized for their size distribution, morphology, phase purity, and crystal structure, by scanning mobility particle sizer, transmission electron microscopy, and X-ray diffraction. It was found that the mean diameter of the particles was highly controllable and ranged from 3 to 6 nm depending on TTIP loading. The particle size was nearly uniform, and particles appeared to be single crystals without excessive aggregation. XRD analyses show that particles directly synthesized in the flame are pure anatase. Upon sintering and size growth on the flame stabilizer, a notable portion of particles transformed into rutile with much larger crystal sizes.  相似文献   

6.
We have conducted an experimental study to investigate the synthesis of multi-walled carbon nanotubes (CNTs) in counterflow methane–air diffusion flames, with emphasis on effects of catalyst, temperature, and the air-side strain rate of the flow on CNTs growth. The counterflow flame was formed by fuel (CH4 or CH4 + N2) and air streams impinging on each other. Two types of substrates were used to deposit CNTs. Ni-alloy (60% Ni + 26% Cr + 14% Fe) wire substrates synthesized curved and entangled CNTs, which have both straight and bamboo-like structures; Si-substrates with porous anodic aluminum oxide (AAO) nanotemplates synthesized well-aligned, self-assembled CNTs. These CNTs grown inside nanopores had a uniform geometry with controllable length and diameter. The axial temperature profiles of the flow were measured by a 125 μm diameter Pt/10% Rh–Pt thermocouple with a 0.3 mm bead junction. It was found that temperature could affect not only the success of CNTs synthesis, but also the morphology of synthesized CNTs. It was also found, against previous general belief, that there was a common temperature region (1023–1073 K) in chemical vapor deposition (CVD) and counterflow diffusion flames where CNTs could be produced. CNTs synthesized in counterflow flames were significantly affected by air-side strain rate not through the residence time, but through carbon sources available for CNTs growth. Off-symmetric counterflow flames could synthesize high-quality CNTs because with this configuration carbon sources at the fuel side could easily diffuse across the stagnation surface to support CNTs growth. These results show the feasibility of using counterflow flames to synthesize CNTs for particular applications such as fabricating nanoscale electronic devices.  相似文献   

7.
This work presents experimental evidence that the transition from gas-phase diffusion-limited combustion for aluminum particles begins to occur at a particle size of 10 μm at a pressure of 8.5 atm. Measurements of the particle temperature by AlO spectroscopy and three-color pyrometry indicate that the peak temperature surrounding a burning particle approaches the aluminum boiling temperature as particle size is decreased to 10 μm when oxygen is the oxidizer. This reduction indicates that reactions are occurring at or near the particle surface rather than in a detached diffusion flame. When CO2 is the oxidizer, the combustion temperatures remain near the aluminum boiling temperature for particles as large as 40 μm, indicating that the flame is consistently near the surface throughout this size range. Burn time measurements of 10 and 2.8 μm powders indicate that burn time is roughly proportional to particle diameter to the first power. The burn rates of micron- and nano-particles also show strong pressure dependence. These measurements all indicate that the combustion has deviated from the vapor-phase diffusion limit, and that surface or near-surface processes are beginning to affect the rate of burning. Such processes would have to be included in combustion models in order to accurately predict burning characteristics for aluminum with diameter less than 10 μm.  相似文献   

8.
A new method is proposed to fabricate nanocrystalline titania (TiO2) films of controlled crystalline size and film thickness. The method uses the laminar, premixed, stagnation flame approach, combining particle synthesis and film deposition in a single step. A rotating disc serves as a combination of substrate-holder and stagnation-surface that stabilizes the flame. Disc rotation repetitively passes the substrates over a thin-sheet, fuel-lean ethylene–oxygen–argon flame doped with titanium tetraisopropoxide. Convective cooling of the back side of the disc keeps the substrate well below the flame temperature, allowing thermophoretic forces to deposit a uniform film of particles that are nucleated and grown via the flame stabilized just below the surface. The particle film grows typically at 1 μm/s. The film is made of narrowly distributed, crystalline TiO2 several nanometers in diameter and forms with a 90% porosity. Analysis shows that the rotation of the stagnation-surface does not reduce the stability of a stagnation flame, nor does it affect the fundamental chemistry of particle nucleation and growth that occurs between the flame and the stagnation surface.  相似文献   

9.
Toluene pyrolysis in high temperature/high pressure argon atmosphere has been studied in a conventional diaphragm-type shock tube. The investigated ranges of temperature and pressure were 1500–2300 K and 8–13 bar, respectively. Extinction measurements in the near infrared have been carried out to follow the formation of carbonaceous particulate (soot). Pyrolysis products were optically characterized by absorption measurements in the wavelength range 300–800 nm, with high time/spectral resolution. The application of Tauc analysis to the absorption spectra allowed to identify three levels of energy gap; they have been attributed to carbonaceous structures with 3–5 and 7–9 fused aromatic rings, and to soot particles.  相似文献   

10.
11.
A joint schlieren imaging, pressure recording and tunable diode laser absorption spectroscopy (TDLAS) thermometry technique was developed to simultaneously determine the flame radius, pressure and line-of-sight averaged temperature of spherically expanding flames of n-butane/air mixtures at initial temperature of 298 K, initial pressure of 1 atm and equivalence ratios of 0.9–1.5. To probe the flame temperature, a mid-infrared interband cascade laser at 4.2 µm was used to measure the time-resolved direct absorption spectra of CO2 which are strongly related to flame temperature, CO2 mole fraction, flame radius and pressure. Quantitative line-of-sight averaged temperatures of burnt gas were obtained by fitting the normalized absorbance spectra. Three typical stages, including the spark affected initial stage, quasi-steady stage and the pressure induced growing stage are determined from the evolution of measured temperature as a function of time and flame radius. The relation between flame temperature, stretch rate and burning velocity of burnt gas are analyzed. Stretch rate is found to have minor effect on the measured temperature in the quasi-steady stage. The relative variation of temperature is much smaller than that of velocity. The flame with lower normalized temperature tends to propagate slower.  相似文献   

12.
Laminar flames propagating in fuel-rich suspensions of iron dust in air were studied in a reduced-gravity environment provided by a parabolic flight aircraft. Experiments were performed with four different dusts having average particle sizes in the range 3–27 μm. Uniform dust suspensions were created inside glass tubes (ID = 48 mm, L = 70 cm) and then ignited at the open end via an electrically heated wire. Quenching distances were determined as the flames propagated through assemblies of equally spaced steel plates installed in the tubes. Flame propagation speeds in the open tubes and within the quenching plates were determined from video recordings, and emission spectra recorded by a spectrometer were used to determine flame temperature. Flame quenching distance was found to increase linearly with particle size from less than 2 mm quenching distance for the 3 μm-sized dust to 10 mm quenching distance for the 27 μm-sized dust. The flame speeds in the open tubes were found to be inversely proportional to the dust particle size, and the minimum speeds observed near quenching within the plate assemblies were found to be a factor of smaller than the flame speeds in the open tube. The experimental results were in good agreement with the predictions of a simple one-dimensional dust flame model with conductive heat loss that assumes the diffusive regime of particle combustion.  相似文献   

13.
The pressure dependence of flame propagation in an Al/CuO nanoscale thermite was studied. Experiments were performed by loosely packing the Al/CuO mixture in an instrumented burn tube, which was placed in a large volume, constant pressure chamber with optical windows. A high-speed camera was used to take photographic data, and six pressure transducers equally spaced along the length of the burn tube were used to measure the local transient pressure. Ambient pressures were varied between 0 and 15 MPa, and three different pressurizing gases were used: argon, helium, and nitrogen. Three modes of propagation were observed. The pressure at which the mode of propagation changed was similar for argon and nitrogen, however, when pressurized with helium, transition occurred at lower pressures. In the low-pressure regime (0–2 MPa) a constant velocity mode with speeds on the order of 1000 m/s was observed. In this region, a convective mode of propagation was dominant. An accelerating regime was observed for a pressure range of approximately 2–5 MPa in argon and nitrogen, with speeds ranging from 100 to 800 m/s. In helium, however, if an accelerating region existed it occurred over a narrow pressure range which was not observed in the present experiments. An oscillating regime was observed in all three gases, in a pressure range of 5–9 MPa for argon and nitrogen, and a range of 2–4 MPa for helium. Velocities in this region are bimodal, and differ by orders of magnitude, suggesting that the propagation mechanism was oscillating between convective and conductive. At relatively high ambient pressures, a constant velocity mode with speeds on the order of 1 m/s was observed for all three gases. The conductive mode of propagation was likely dominant in this region.  相似文献   

14.
Flame spread experiments in both concurrent and opposed flow have been carried out in a 5.18-s drop tower with a thin cellulose fuel. Flame spread rate and flame length have been measured over a range of 0–30 cm/s forced flow (in both directions), 3.6–14.7 psia, and oxygen mole fractions 0.24–0.85 in nitrogen. Results are presented for each of the three variables independently to elucidate their individual effects, with special emphasis on pressure/oxygen combinations that result in earth-equivalent oxygen partial pressures (normoxic conditions). Correlations using all three variables combined into a single parameter to predict flame spread rate are presented. The correlations are used to demonstrate that opposed flow flames in typical spacecraft ventilation flows (5–20 cm/s) spread faster than concurrent flow flames under otherwise similar conditions (pressure, oxygen concentration) in nearly all spacecraft atmospheres. This indicates that in the event of an actual fire aboard a spacecraft, the fire is likely to grow most quickly in the opposed mode as the upstream flame spreads faster and the downstream flame is inhibited by the vitiated atmosphere produced by the upstream flame. Additionally, an interesting phenomenon was observed at intermediate values of concurrent forced flow velocity where flow/flame interactions produced a recirculation downstream of the flame, which allowed an opposed flow leading edge to form there.  相似文献   

15.
Thermodynamic calculations show that some metals can react with sulfur without the formation of gaseous products at normal pressure and yet demonstrate sufficiently high flame temperatures to support the propagation of stable flames. For example, a stoichiometric ternary mixture of iron, manganese, and sulfur demonstrates gasless combustion at an equimolar concentration of iron and of manganese with an adiabatic flame temperature of about 2000 °C. Differential thermal analysis of the mixture shows no exothermic reactions below 280 °C. Therefore, sulfur in the mixture can be safely melted (m.p. 119 °C), converting a powder blend into a liquid suspension that is free from gas bubbles. Symmetrical cylindrical flames in shallow pools of suspensions of Fe and Mn powders in liquid sulfur and combustion of the same liquid mixtures in preheated narrow steel tubes have been studied to determine flame propagation speeds as a function of mixture composition. It was found that, contrary to the behavior of the calculated flame temperature, flame speed decreases with the increase of the manganese content in the mixture and is not affected by mixture dilution with the combustion product. Direct measurements of the flame temperatures by thermocouples indicated a weak dependence of the peak flame temperature on mixture composition and revealed a two-stage flame structure. The existence of the two distinct reaction zones in the mixture of two reactive metals with sulfur is in accordance with qualitative theoretical predictions by the theory of flame with parallel reactions existing in the literature. According to theory, the reaction with the higher flame speed in a corresponding binary single-metal–sulfur mixture will form the leading stage of the complex flame front and will govern the flame propagation speed in the ternary composition. The speed of flame propagation in pure Fe–S mixture is almost three times higher than the flame speed in Mn–S mixture. As a result, the iron–sulfur reaction dominates the flame propagation mechanism in Fe–Mn–S suspension.  相似文献   

16.
Absolute CN and CH radical concentrations were determined in situ during the combustion of a graphite substrate in premixed, laminar, low-pressure, H2/O2 flames for two different equivalence ratios, = 1.0 and = 1.5. For CN measurements, a small amount of NO (1.8%) was added. The concentration of CN was measured by cavity ring-down spectroscopy (CRDS) probing the absorption of the P1,2 (13) in the B–X (0, 0) band at 388.1 nm, and the concentration of CH was measured by linear unsaturated laser-induced fluorescence (LIF) exciting the fluorescence of the R1 (4) in the B–X (0, 0) band at 387.4 nm. Temperature measurements were done based on LIF excitation spectra of OH in the A–X (0, 0) band. It was found that the graphite substrate reduces the flame temperature in the vicinity of its surface. The CN concentrations were found to be three times higher for the rich flame than for the stoichiometric flame. CH concentrations were slightly higher for the stoichiometric flame than for the rich flame. The observed CH/CN concentration ratio is substantially lower compared to NO-doped low-pressure CH4/O2 flames. The obtained quantitative information can serve as a first calibration point for detailed numerical simulations of the burning solid graphite, which are based on the concept of surface elementary reactions.  相似文献   

17.
转炉炼钢的终点控制包括钢水出钢时温度及其成分的控制,炉口火焰能够反映炉内脱碳速率及转炉运行参数等。工业炉燃烧火焰可见光谱段,普遍存在着钾(K)和钠(Na)等碱金属元素的原子发射谱线,利用K的特征谱线相对比值可以计算火焰温度。基于辐射双色法,三色法和谱线相对强度法对转炉口火焰温度进行了测量;数据处理过程中对特征谱线进行了基线拟合提取,小波脊线拟合提取;特征谱线进行了Gauss函数和Lorenz函数拟合。结果表明,辐射测温法对谱线比较敏感,选择合理的波段能够有效,精确地测量火焰温度;采用谱线相对强度法受制于特征谱线的数学模型、谱线的跃迁机率、能级的简并度及火焰的光学厚度,需要分辨率非常高的光谱仪才能进行高温转炉火焰中电子温度的测量。  相似文献   

18.
A 1.5 m long turbulent-wake combustion vessel with a 0.15 m × 0.15 m cross-sectional area is proposed for spatiotemporal measurements of curvature, strain, dilatation and burning rates along a freely downward-propagating premixed flame interacting with a parallel row of staggered vortex pairs having both compression (negative) and extension (positive) strains simultaneously. The wanted wake is generated by rapidly withdrawing an electrically-controlled, horizontally-oriented sliding plate of 5 mm thickness for flame–wake interactions. Both rich and lean CH4/air flames at the equivalence ratios  = 1.4 and  = 0.7 with nearly the same laminar burning velocity are studied, where flame–wake interactions and their time-dependent velocity fields are obtained by high-speed, high-resolution DPIV and laser-tomography. Correlations among curvature, strain, stretch, and dilatation rates along wrinkled flame fronts at different times are measured and thus their influences on front propagation rates can be analyzed. It is found that strain-related effects have significant influence on front propagation rates of rich CH4/air (diffusionally stable) flames even when the curvature weights more in the total stretch than the strain rate does. The local propagation rates along the wrinkled flame front are more intense at negative strain rates corresponding to positive peak dilatation rates but the global propagation rate averaged along the rich flame front remains constant during all period of flame–wake interaction. For lean CH4/air (diffusionally unstable) flames, the curvature becomes a dominant parameter influencing the structure and propagation of the wrinkled flame front, where both local and global propagation rates increase significantly with time, showing unsteady flame propagation. These experimental results suggest that the theory of laminar flame stretch can be applicable to a more complex flame–wake interaction involving unsteadiness and multitudinous interactions between vortices.  相似文献   

19.
We report a spatially resolved spectroscopic study of the visible chemiluminescence emission from different premixed ammonia-air-oxygen flames stabilized on a laminar flat flame burner, with equivalence ratio ranging from 0.7 to 1.35 and an O2/N2 ratio of 0.4. In the reaction zone of the observed flames, the visible emission was recognized to be the chemiluminescence of excited NH2* radicals, while in the post-flame zone, two types of chemiluminescence were observed: NO2* chemiluminescence dominated in the fuel-lean flames and NH2* chemiluminescence dominated in the fuel-rich flames. The high-resolution spectra of the NO2* and NH2* chemiluminescence in the visible region (400-700 nm) were recorded. The intensity of both spectra increased gradually with wavelength. However, the NO2*-chemiluminescence spectrum appeared to be continuous and unstructured, while the NH2*-chemiluminescence spectrum consisted of groups of distinct emission lines. Based on the spectral feature, the ratios of the integrated chemiluminescence intensities over the 598-603 nm wavelength range to the intensities over the 586-592 nm range and 447-453 nm range were used to sense equivalence ratio. In addition, slightly different colors of the fuel-lean and fuel-rich flames were observed, due to the fact that NO2* chemiluminescence had a relatively stronger signal in the blue region than NH2* chemiluminescence. The difference was used to infer flame equivalence ratio using the flame images recorded by a RGB digital camera, where the ratio of the signal from the red channel to the signal from the blue channel was calculated.  相似文献   

20.
Two-photon laser-induced predissociative fluorescence (LIPF) of H2O is examined as a potential measurement technique of H2O concentration and temperature in flames. Two-photons of 248 nm light from a narrowband KrF laser excite H2O to the highly predissociative state in a hydrogen-air flame. The subsequent bound-free emission is observed from 400–500 nm in the flame at temperatures of 1000–2000 K and is found to be free of fluorescence interference from other flame species. This LIPF signal is not affected by collisional quenching due to the short lifetime of the predissociative state (2.5 ps). Broadband laser dispersion spectra, narrowband laser dispersion spectra, laser excitation spectra and probability density functions of the H2O fluorescence are obtained in the hydrogen flame. The H2O LIPF signal is found to be temperature sensitive and a two-line LIPF technique is needed for concentration and temperature measurement. The accuracy of a two-line LIPF technique for H2O concentration and temperature measurement is determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号