首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tetrahedral FeCl[N(SiMe(3))(2)](2)(THF) (2), prepared from FeCl(3) and 2 equiv of Na[N(SiMe(3))(2)] in THF, is a useful ferric starting material for the synthesis of weak-field iron-imide (Fe-NR) clusters. Protonolysis of 2 with aniline yields azobenzene and [Fe(2)(mu-Cl)(3)(THF)(6)](2)[Fe(3)(mu-NPh)(4)Cl(4)] (3), a salt composed of two diferrous monocations and a trinuclear dianion with a formal 2 Fe(III)/1 Fe(IV) oxidation state. Treatment of 2 with LiCl, which gives the adduct [FeCl(2)(N(SiMe(3))(2))(2)](-) (isolated as the [Li(TMEDA)(2)](+) salt), suppresses arylamine oxidation/iron reduction chemistry during protonolysis. Thus, under appropriate conditions, the reaction of 1:1 2/LiCl with arylamine provides a practical route to the following Fe-NR clusters: [Li(2)(THF)(7)][Fe(3)(mu-NPh)(4)Cl(4)] (5a), which contains the same Fe-NR cluster found in 3; [Li(THF)(4)](2)[Fe(3)(mu-N-p-Tol)(4)Cl(4)] (5b); [Li(DME)(3)](2)[Fe(2)(mu-NPh)(2)Cl(4)] (6a); [Li(2)(THF)(7)][Fe(2)(mu-NMes)(2)Cl(4)] (6c). [Li(DME)(3)](2)[Fe(4)(mu(3)-NPh)(4)Cl(4)] (7), a trace product in the synthesis of 5a and 6a, forms readily as the sole Fe-NR complex upon reduction of these lower nuclearity clusters. Products were characterized by X-ray crystallographic analysis, by electronic absorption, (1)H NMR, and M?ssbauer spectroscopies, and by cyclic voltammetry. The structures of the Fe-NR complexes derive from tetrahedral iron centers, edge-fused by imide bridges into linear arrays (5a,b; 6a,c) or the condensed heterocubane geometry (7), and are homologous to fundamental iron-sulfur (Fe-S) cluster motifs. The analogy to Fe-S chemistry also encompasses parallels between Fe-mediated redox transformations of nitrogen and sulfur ligands and reductive core conversions of linear dinuclear and trinuclear clusters to heterocubane species and is reinforced by other recent examples of iron- and cobalt-imide cluster chemistry. The correspondence of nitrogen and sulfur chemistry at iron is intriguing in the context of speculative Fe-mediated mechanisms for biological nitrogen fixation.  相似文献   

2.
By reacting 1-aminoethylammonium (H2NCH2CH2NH3+ = enH+) salts of [Sn2E6]4- anions (E = S, Se), [enH]4[Sn2S6] (1) and [enH]4[Sn2Se6] x en (2), with FeCl2/LiCp, three novel (partly) oxidized, Cp* ligated iron chalcogenide clusters were synthesized. Two of them, [(CpFe)3(mu3-S)2] (3) and [(Cp*Fe)3(mu3-Se)2] (4), contain formally 47 valence electrons. [(Cp*Fe)3(SnCl3)(mu3-Se)4] x DME (5) represents the first known mixed metal Fe/Sn/Se heterocubane type cluster. Compounds 3-5 were structurally characterized by single-crystal X-ray diffraction, and the odd valence electron number of the [Fe3E2] clusters (E = S, Se) was confirmed by density functional (DFT) investigations, mass spectrometry, cyclic voltammetry and a susceptibility measurement of 3.  相似文献   

3.
The dinuclear precursors Fe(2)(N(t)Bu)(2)Cl(2)(NH(2)(t)Bu)(2), [Fe(2)(N(t)Bu)(S)Cl(4)](2-), and Fe(2)(NH(t)Bu)(2)(S)(N{SiMe(3)}(2))(2) allowed the selective syntheses of the cubane clusters [Fe(4)(N(t)Bu)(n)(S)(4-n)Cl(4)](z) with [n, z] = [3, 1-], [2, 2-], [1, 2-]. Weak-field iron-sulfur clusters with heteroleptic, nitrogen-containing cores are of interest with respect to observed or conjectured environments in the iron-molybdenum cofactor of nitrogenase. In this context, the present iron-imide-sulfide clusters constitute a new class of compounds for study, with the Fe(4)NS(3) core of the [1, 2-] cluster affording the first synthetic representation of the corresponding heteroligated Fe(4)S(3)X subunit in the cofactor.  相似文献   

4.
The reactivity of [HMCo3(CO)12] and [Et4N][MCo3(CO)12] (M = Fe, Ru) toward phosphine selenides such as Ph3PSe, Ph2P(Se)CH2PPh2, Ph2(2-C5H4N)PSe, Ph2(2-C4H3S)PSe, and Ph2[(2-C5H4N)(2-C4H2S)]PSe has been studied with the aim to obtain new selenido-carbonyl bimetallic clusters. The reactions of the hydrido clusters give two main classes of products: (i) triangular clusters with a mu3-Se capping ligand of the type [MCo2(mu3-Se)(CO)(9-x)L(y)] resulting from the selenium transfer (x = y = 1, 2, with L = monodentate ligand; x = 2, 4, and y = 1, 2, with L = bidentate ligand) (M = Fe, Ru) and (ii) tetranuclear clusters of the type [HMCo3(CO)12xL(y)] obtained by simple substitution of axial, Co-bound carbonyl groups by the deselenized phosphine ligand. The crystal structures of [HRuCo3(CO)7(mu-CO)3(mu-dppy)] (1), [MCo2(mu3-Se)(CO)7(mu-dppy)] (M = Fe (16) or Ru (2)), and [RuCo2(mu3-Se)(CO)7(mu-dppm)] (12) are reported [dppy = Ph2(2-C5H4N)P, dppm = Ph2PCH2PPh2]. Clusters 2, 12, and 16 are the first examples of trinuclear bimetallic selenido clusters substituted by phosphines. Their core consists of metal triangles capped by a mu3-selenium atom with the bidentate ligand bridging two metals in equatorial positions. The core of cluster 1 consists of a RuCo3 tetrahedron, each Co-Co bond being bridged by a carbonyl group and one further bridged by a dppy ligand. The coordination of dppy in a pseudoaxial position causes the migration of the hydride ligand to the Ru(mu-H)Co edge. In contrast to the reactions of the hydrido clusters, those with the anionic clusters [MCo3(CO)12]- do not lead to Se transfer from phosphorus to the cluster but only to CO substitution by the deselenized phosphine.  相似文献   

5.
Mechanochemical reaction of cluster coordination polymers 1infinity[M3Q7Br4] (M = Mo, W; Q = S, Se) with solid K2C2O4 leads to cluster core excision with the formation of anionic complexes [M3Q7(C2O4)3]2-. Extraction of the reaction mixture with water followed by crystallization gives crystalline K2[M3Q7(C2O4)3].0.5KBr.nH2O (M = Mo, Q = S, n = 3 (1); M = Mo, Q = Se, n = 4 (2); M = W, Q = S, n = 5 (3)). Cs2[Mo3S7(C2O4)3].0.5CsCl.3.5H2O (4) and (Et4N)1.5H0.5K{[Mo3S7(C2O4)3]Br}.2H2O (5) were also prepared. Close Q...Br contacts result in the formation of ionic triples {[M3Q7(C2O4)3](2)Br}5- in 1-4 and the 1:1 adduct {[Mo3S7(C2O4)3]Br}3- in 5. Treatment of 1 or 2 with PPh(3) leads to chalcogen abstraction with the formation of [Mo3(mu3-Q)(mu2-Q)3(C2O4)3(H2O)3]2-, isolated as (Ph4P)2[Mo3(mu3-S)(mu2-S)3(C2O4)3(H2O)3].11H2O (6) and (Ph4P2[Mo3(mu3-Se)(mu2-Se)3(C2O4)3(H2O)3].8.5H2O.0.5C2H5OH (7). All compounds were characterized by X-ray structure analysis. IR, Raman, electronic, and 77Se NMR spectra are also reported. Thermal decomposition of 1-3 was studied by thermogravimetry.  相似文献   

6.
A coordinatively unsaturated dinuclear iron(II) complex of bulky thiolates, [(TipS)Fe(micro-SDmp)]2 (1; Tip = 2,4,6-(i)Pr(3)C(6)H(2), Dmp = 2,6-(mesityl)(2)C(6)H(3)), was synthesized from stepwise reactions of Fe{N(SiMe(3))2}2 with 1 equiv of HSDmp and then with 1 equiv of HSTip. Complex 1 was found to react with elemental sulfur (S8) in toluene to generate a new class of [8Fe-7S] cluster, [(DmpS)Fe(4)S(3)]2(micro-SDmp)2(micro-STip)(micro(6)-S) (2). The cluster 2 was also produced from one-pot reactions of Fe{N(SiMe(3))2}2 + HSDmp + HSTip + S8 (8:6:10:7/8) and Fe3{N(SiMe(3))2}2(micro-STip)4 + HSDmp + S8 (8/3:16/3:7/8), where another [8Fe-7S] cluster, [(TipS)Fe(4)S(3)]2(micro-SDmp)2{micro-N(SiMe(3))2}(micro(6)-S) (3), was also found as a minor byproduct. In either of the clusters, two Fe(4)S(3) incomplete cubane units are connected by three anionic ligands, namely three thiolate S atoms for 2 or two thiolate S atoms and one amide N atom for 3, and one hexa-coordinate S atom resides at the center of the [8Fe-7S] core. They have a common Fe(II)(5)Fe(III)3 oxidation states, and an S = 1/2 ground spin state was indicated by rhombic EPR signals at 10 K with g = 2.19, 2.07, and 1.96 for 2 and g = 2.13, 2.06, and 1.93 for 3. The structural relevance of clusters 2 and 3 to P-cluster, FeMo-co, and FeFe-co of nitrogenases is discussed.  相似文献   

7.
The occurrence of a heteroatom X (C, N, or O) in the MoFe7S9X core of the iron-molybdenum cofactor of nitrogenase has encouraged synthetic attempts to prepare high-nuclearity M-Fe-S-X clusters containing such atoms. We have previously shown that reaction of the edge-bridged double cubane [(Tp)2Mo2Fe6S8(PEt3)4] (1) with nucleophiles HQ- affords the clusters [(Tp)2Mo2Fe6S8Q(QH)2](3-) (Q = S, Se) in which HQ- is a terminal ligand and Q(2-) is a mu2-bridging atom in the core. Reactions with OH- used as such or oxygen nucleophiles generated in acetonitrile from (Bu3Sn)2O or Me3SnOH and fluoride were examined. Reaction of 1 with Et4NOH in acetonitrile/water generates [(Tp)2Mo2Fe6S9(OH)2]3- (3), isolated as [(Tp)2Mo2Fe6S9(OH)(OC(=NH)Me)(H2O)](3-) and shown to have the [Mo2Fe6(mu2-S)2(mu3-S)6(mu6-S)] core topology very similar to the P(N) cluster of nitrogenase. The reaction system 1/Et4NOH in acetonitrile/methanol yields the P(N)-type cluster [(Tp)2Mo2Fe6S9(OMe)2(H2O)](3-) (5). The system 1/Me3SnOH/F- affords the oxo-bridged double P(N)-type cluster {[(Tp)2Mo2Fe6S9(mu2-O)]2}5- (7), convertible to the oxidized cluster {[(Tp)2Mo2Fe6S9(mu2-O)]2}4- (6), which is prepared independently from [(Tp)2Mo2Fe6S9F2(H2O)](3-)/(Bu3Sn)2O. In the preparations of 3-5 and 7, hydroxide liberates sulfide from 1 leading to the formation of P(N)-type clusters. Unlike reactions with HQ-, no oxygen atoms are integrated into the core structures of the products. However, the half-dimer composition [Mo2Fe6S9O] relates to the MoFe7S9 constitution of the putative native cluster with X = O. (Tp = hydrotris(pyrazolyl) borate(1-)).  相似文献   

8.
Zhou HC  Su W  Achim C  Rao PV  Holm RH 《Inorganic chemistry》2002,41(12):3191-3201
High-nuclearity Mo[bond]Fe[bond]S clusters are of interest as potential synthetic precursors to the MoFe(7)S(9) cofactor cluster of nitrogenase. In this context, the synthesis and properties of previously reported but sparsely described trinuclear [(edt)(2)M(2)FeS(6)](3-) (M = Mo (2), W (3)) and hexanuclear [(edt)(2)Mo(2)Fe(4)S(9)](4-) (4, edt = ethane-1,2-dithiolate; Zhang, Z.; et al. Kexue Tongbao 1987, 32, 1405) have been reexamined and extended. More accurate structures of 2-4 that confirm earlier findings have been determined. Detailed preparations (not previously available) are given for 2 and 3, whose structures exhibit the C(2) arrangement [[(edt)M(S)(mu(2)-S)(2)](2)Fe(III)](3-) with square pyramidal Mo(V) and tetrahedral Fe(III). Oxidation states follow from (57)Fe M?ssbauer parameters and an S = (3)/(2) ground state from the EPR spectrum. The assembly system 2/3FeCl(3)/3Li(2)S/nNaSEt in methanol/acetonitrile (n = 4) affords (R(4)N)(4)[4] (R = Et, Bu; 70-80%). The structure of 4 contains the [Mo(2)Fe(4)(mu(2)-S)(6)(mu(3)-S)(2)(mu(4)-S)](0) core, with the same bridging pattern as the [Fe(6)S(9)](2-) core of [Fe(6)S(9)(SR)(2)](4-) (1), in overall C(2v) symmetry. Cluster 4 supports a reversible three-member electron transfer series 4-/3-/2- with E(1/2) = -0.76 and -0.30 V in Me(2)SO. Oxidation of (Et(4)N)(4)[4] in DMF with 1 equiv of tropylium ion gives [(edt)(2)Mo(2)Fe(4)S(9)](3-) (5) isolated as (Et(4)N)(3)[5].2DMF (75%). Alternatively, the assembly system (n = 3) gives the oxidized cluster directly as (Bu(4)N)(3)[5] (53%). Treatment of 5 with 1 equiv of [Cp(2)Fe](1+) in DMF did not result in one-electron oxidation but instead produced heptanuclear [(edt)(2)Mo(2)Fe(5)S(11)](3-) (6), isolated as the Bu(4)N(+)salt (38%). Cluster 6 features the previously unknown core Mo(2)Fe(5)(mu(2)-S)(7)(mu(3)-S)(4) in molecular C(2) symmetry. In 4-6, the (edt)MoS(3) sites are distorted trigonal bipramidal and the FeS(4) sites are distorted tetrahedral with all sulfide ligands bridging. M?ssbauer spectroscopic data for 2 and 4-6 are reported; (mean) iron oxidation states increase in the order 4 < 5 approximately 1 < 6 approximately 2. Redox and spectroscopic data attributed earlier to clusters 2 and 4 are largely in disagreement with those determined in this work. The only iron and molybdenum[bond]iron clusters with the same sulfide content as the iron[bond]molybdenum cofactor of nitrogenase are [Fe(6)S(9)(SR)(2)](4-) and [(edt)(2)Mo(2)Fe(4)S(9)](3-)(,4-).  相似文献   

9.
Wang H  Wang Y  Chan HS  Xie Z 《Inorganic chemistry》2006,45(14):5675-5683
Reaction of [eta:(5)sigma-Me2C(C5H4)(C2B10H10)]TiCl(NMe2) (1) with 1 equiv of PhCH2K, MeMgBr, or Me3SiCH2Li gave corresponding organotitanium alkyl complexes [eta:(5)sigma-Me2C(C5H4)(C2B10H10)]Ti(R)(NMe2) (R = CH2Ph (2), CH2SiMe3 (4), or Me (5)) in good yields. Treatment of 1 with 1 equiv of n-BuLi afforded the decomposition product {[eta:(5)sigma-Me2C(C5H4)(C2B10H10)]Ti}2(mu-NMe)(mu:sigma-CH2NMe) (3). Complex 5 slowly decomposed to generate a mixed-valence dinuclear species {[eta:(5)sigma-Me2C(C5H4)(C2B10H10)]Ti}2(mu-NMe2)(mu:sigma-CH2NMe) (6). Complex 1 reacted with 1 equiv of PhNCO or 2,6-Me2C6H3NC to afford the corresponding monoinsertion product [eta:(5)sigma-Me2C(C5H4)(C2B10H10)]Ti(Cl)[eta(2)-OC(NMe2)NPh] (7) or [eta:(5)sigma-Me2C(C5H4)(C2B10H10)]Ti(Cl)[eta(2)-C(NMe2)=N(2,6-Me2C6H3)] (8). Reaction of 4 or 5 with 1 equiv of R'NC gave the titanium eta(2)-iminoacyl complexes [eta:(5)sigma-Me2C(C5H4)(C2B10H10)]Ti(NMe2)[eta(2)-C(R)=N(R')] (R = CH2SiMe3, R' = 2,6-Me2C6H3 (9) or tBu (10); R = Me, R' = 2,6-Me2C6H3 (11) or tBu (12)). The results indicated that the unsaturated molecules inserted into the Ti-N bond only in the absence of the Ti-C(alkyl) bond and that the Ti-C(cage) bond remained intact. All complexes were fully characterized by various spectroscopic techniques and elemental analyses. Molecular structures of 2, 3, 6-8, and 10-12 were further confirmed by single-crystal X-ray analyses.  相似文献   

10.
Sung KM  Holm RH 《Inorganic chemistry》2000,39(6):1275-1281
Recent protein crystallographic results on tungsten enzymes and primary sequence relationships between certain molybdenum and tungsten enzymes provoke interest in the generalized bis(dithiolene) complexes [WIV(QR)(S2C2R'2)2]1- and [WVIO(QR)(S2C2R'2)2]1- (Q = O, S, Se) as minimal representations of enzyme sites. The existence and stability of W(IV) complexes have been explored by synthesis. Reaction of [W(CO)2(S2C2Me2)2] (1) with PhO- results in complete CO substitution to give [W(OPh)(S2C2Me2)2]1- (2). Reaction of 1 with PhQ- affords the monocarbonyls [W(CO)(QPh)(S2C2Me2)2]1- (Q = S (3), Se (5)). The use of sterically demanding 2,4,6-Pri3C6H2Q- also yields monocarbonyls, [W(CO)(QC6H2-2,4,6-Pri3)(S2C2Me2)2]1- (Q = S (4), Se (6)). The X-ray structures of square pyramidal 2 and trigonal prismatic 3-6 (with unidentate ligands cis) are described. The tendency to substitute one or both carbonyl ligands in 1 in the formation of [MIV(QAr)(S2C2Me2)2]1- and [MIV(CO)(QAr)(SeC2Me2)2]1- with M = Mo and W is related to the M-Q bond length and ligand steric demands. The results demonstrate a stronger binding of CO by W(IV) than Mo(IV), a behavior previously demonstrated by thermodynamic and kinetic features of zerovalent carbonyl complexes. Complexes 3-6 can be reversibly reduced to W(III) at approximately -1.5 V versus SCE. On the basis of the potential for 2(-2.07 V), monocarbonyl ligation stabilizes W(III) by approximately 500 mV. This work is part of a parallel investigation of the chemistry of bis(dithiolene)-molybdenum (Lim, B. S.; Donahue, J. P.; Holm, R. H. Inorg. Chem. 2000, 39, 263) and -tungsten complexes related to enzyme active sites.  相似文献   

11.
The use of 2,2':6',2'-terpyridine-4'-thiol (tpySH) was explored as a bridging ligand for the formation of stable assemblies containing both [4Fe-4S] clusters and single metal ions. Reaction of tpySH (2 equiv) with (NH4)2Fe(SO4)(2).6H2O generated the homoleptic complex [Fe(tpySH)2](2+), which was isolated as its PF6(-) salt. The compound could be fully deprotonated to yield neutral [Fe(tpyS)2], and the absorption spectrum is highly dependent on the protonation state. Reaction of [Fe(tpySH)2](PF6)2 with the new 3:1 site-differentiated cluster (n-Bu4N)2[Fe4S4(TriS)(SEt)] yielded the first metal-bridged [4Fe-4S] cluster dimer, (n-Bu4N)2[{Fe4S4(TriS)(mu-Stpy)}2Fe]. Electrochemical studies indicate that the [4Fe-4S] clusters in the dimer act as independent redox units, while UV-vis spectroscopy provides strong evidence for a thioquinonoid electron distribution in the bridging tpyS(-) ligand. TpySH thus acts as a directional bridging ligand between [4Fe-4S] clusters and single metal ions, thereby opening the way to the synthesis of larger, more complex assemblies.  相似文献   

12.
Complexes of the early lanthanides with the donor-functionalized alkoxide ligand mmp (Hmmp = HOCMe(2)CH(2)OMe, 1-methoxy-2-methylpropan-2-ol) are excellent precursors for Metal Organic Chemical Vapor Deposition (MOCVD) and Atomic Layer Deposition (ALD) of lanthanide oxides; however, their coordination chemistry, which is the subject of this paper, is rather complex. Precursors for MOCVD and ALD of lanthanide oxides are prepared by the reaction of [Ln{N(SiMe(3))(2)}(3)] with 3 equiv of the alcohol Hmmp in toluene in the presence of 1 equiv of tetraglyme and are indefinitely stable in solution. Reaction of [Ln{N(SiMe(3))(2)}(3)] with 3 equiv of Hmmp in the absence of stabilizing Lewis bases gives complex condensed products with empirical formula [{Ln(mmp)(3-n)}(2)O(n)]. These condensed products show poor volatility and are unsatisfactory precursors for MOCVD or ALD of oxides. The cluster complex [La(3)(mu(3),kappa(2)-mmp)(2)(mu(2),kappa(2)-mmp)(3)(mmp)(4)] has been prepared by careful reaction of [La{N(SiMe(3))(2)}(3)] with 4 equiv of Hmmp and has been characterized by single-crystal X-ray diffraction. Salt metathesis reactions using M(mmp) (M = Li or Na) are unreliable routes to [Ln(mmp)(3)]. Crystals of the heterometallic cluster complex [NaLa(3)(mu(3)-OH)(mu(3),kappa(2)-mmp)(2)(mu(2),kappa(2)-mmp)(4)(mmp)(3)] were isolated from the reaction of [La(NO(3))(3)(tetraglyme)] with 3 equiv of Na(mmp), and crystals of [Li(kappa(2)-Hmmp)Pr(mu(2),eta(2)-mmp)(4))LiCl] were isolated from the reaction of PrCl(3) with 3 equiv of Li(mmp); both of these complexes have been characterized by single-crystal X-ray diffraction.  相似文献   

13.
Reaction of the edge-bridged double cubane cluster [(Tp)(2)M(2)Fe(6)S(8)(PEt(3))(4)] (1; Tp = hydrotris(pyrazolyl)borate(1-)) with hydrosulfide affords the clusters [(Tp)(2)M(2)Fe(6)S(9)(SH)(2)](3)(-)(,4)(-) (M = Mo (2), V), which have been established as the first structural (topological) analogues of the P(N) cluster of nitrogenase. The synthetic reaction is an example of core conversion, resulting in the transformation M(2)Fe(6)(mu(3)-S)(6)(mu(4)-S)(2) (C(i)) --> M(2)Fe(6)(mu(2)-S)(2)(mu(3)-S)(6)(mu(6)-S) (C(2)(v)), the reaction pathway of which is unknown. The most prominent structural feature of P(N)-type clusters is the mu(6)-S atom, which bridges six iron atoms in two MFe(3)S(3) cuboidal halves of the cluster. The initial issue in core conversion is the origin of the mu(6)-S atom. Utilizing SeH(-) as a surrogate reactant for SH(-) in the system 1/SeH(-)/L(-) in acetonitrile, a series of selenide clusters [(Tp)(2)Mo(2)Fe(6)S(8)SeL(2)](3)(-) (L(-) = SH(-) (4), SeH(-) (5), EtS(-) (6), CN(-) (7)) was prepared. The electrospray mass spectra of 4 and 6 revealed inclusion of one Se atom in each cluster, and (1)H NMR spectra and crystallographic refinements of 4-7 indicated that this atom was disordered over the two mu(2)-S/Se positions. The clusters {[(Tp)(2)Mo(2)Fe(6)S(9)](mu(2)-S)}(2)(5)(-) (8) and {[(Tp)(2)Mo(2)Fe(6)S(8)Se](mu(2)-Se)}(2)(5)(-) (9) were prepared from 2 and 5, respectively, and shown to be isostructural. They consist of two P(N)-type cluster units bridged by two mu(2)-S or mu(2)-Se atoms. It is concluded that, in the preparation of 2, the probable structural fate of the attacking nucleophile is as a mu(2)-S atom, and that the mu(3)-S and mu(6)-S atoms of the product cluster derive from precursor cluster 1. Cluster fragmentation during P(N)-type cluster synthesis is unlikely.  相似文献   

14.
Phenyl triflate reacts with CF3SiMe3/Q+F- (Q+ = [K(18-crown-6)]+, Me4N+) and (Me2N)3S+Me3SiF2- to afford the first noncyclic [10-S-5] sulfuranide dioxide salts, [(CF3)3SO2]-Q+, with three S-C bonds, whose molecular structure was determined by X-ray crystallography.  相似文献   

15.
Wei ZH  Li HX  Zhang WH  Ren ZG  Zhang Y  Lang JP  Abrahams BF 《Inorganic chemistry》2008,47(22):10461-10468
Treatment of [Et 4N] 2[(edt) 2Mo 2S 2(mu-S) 2] ( 1) (edt = ethanedithiolate) with equimolar CuBr afforded an anionic hexanuclear cluster [Et 4N] 2[(edt) 2Mo 2(mu-S) 3(mu 3-S)Cu] 2.2CH 2Cl 2 ( 2.2CH 2Cl 2). On the other hand, reactions of 1 with 2 equiv of CuBr in the presence of 1,2-bis(diphenylphosphino)methane (dppm) and pyridine (Py) ligands gave rise to two neutral tetranuclear clusters [(edt) 2Mo 2O 2(mu-S) 2Cu 2(dppm) 2] ( 3) and [(edt) 2Mo 2O(mu 3-S)(mu-S) 2Cu 2(Py) 4] ( 4), respectively. The reaction of 1 with 2 equiv of CuBr followed by the addition of a mixture of dppm and Py (molar ratio = 1:2) yielded another neutral tetranuclear cluster [(edt) 2Mo 2(mu-S) 2(mu 3-S) 2Cu 2(dppm)(Py)].Py ( 5.Py). Compounds 2- 5 have been characterized by elemental analysis, UV-vis spectra, IR spectra, (1)H NMR, and X-ray analysis. The structure of the dianion of 2 can be viewed as having a [Mo 4S 8Cu 2] core in which two chemically equivalent [Mo 2(mu-S) 3(mu 3-S)(edt) 2Cu] (-) anions are linked by two extra Cu-S edt bonds. The molecular structure of 3 may be visualized as being built of one [(edt) 2Mo 2X 2(mu-S) 2] (2-) dianion and one [Cu 2(dppm) 2] (2+) dication that are connected by a pair of M-mu-S edt bonds. Compound 4 is formed by the affiliation of two Cu(I) atoms only at one end of the [(edt) 2Mo 2S 2(mu-S) 2] moiety, connecting with the S t atoms and the S edt atom. Cluster 5.Py can be viewed as being constructed from the addition of one Cu atom onto the incomplete cubanelike [Mo 2S 4Cu] framework through one terminal sulfur and one edt sulfur. Among the four clusters, 3 and 4 have internal mirror symmetry or pseudo mirror symmetry, respectively, while 2 and 5 are asymmetric clusters with racemic formation.  相似文献   

16.
A series of di-, tri-, and tetra-nuclear iron-oxido clusters with bis(trimethylsilyl)amide and thiolate ligands were synthesized from the reactions of Fe{N(SiMe(3))(2)}(2) (1) with 1 equiv of thiol HSR (R = C(6)H(5) (Ph), 4-(t)BuC(6)H(4), 2,6-Ph(2)C(6)H(3) (Dpp), 2,4,6-(i)Pr(3)C(6)H(2) (Tip)) and subsequent treatment with O(2). The trinuclear clusters [{(Me(3)Si)(2)N}Fe](3)(μ(3)-O){μ-S(4-RC(6)H(4))}(3) (R = H (3a), (t)Bu (3b)) were obtained from the reactions of 1 with HSPh or HS(4-(t)BuC(6)H(4)) and O(2), while we isolated a tetranuclear cluster [{(Me(3)Si)(2)N}(2)Fe(2)(μ-SDpp)](2)(μ(3)-O)(2) (4) as crystals from an analogous reaction with HSDpp. Treatment of a tertrahydrofuran (THF) solution of 1 with HSTip and O(2) resulted in the formation of a dinuclear complex [{(Me(3)Si)(2)N}(TipS)(THF)Fe](2)(μ-O) (5). The molecular structures of these complexes have been determined by X-ray crystallographic analysis.  相似文献   

17.
A model system for biological Rieske clusters that incorporates bis-benzimidazolate ligands ((Pr)bbim)(2-) has been developed ((Pr)bbimH(2) = 4,4-bis(benzimidazol-2-yl)heptane). The diferric and mixed-valence clusters have been prepared and characterized in both their protonated and deprotonated states. The thermochemistry of interconversions of these species has been measured, and the effect of protonation on the reduction potential is in good agreement to that observed in the biological systems. The mixed-valence and protonated congener [Fe(2)S(2)((Pr)bbim)((Pr)bbimH)](Et(4)N)(2) (4) reacts rapidly with TEMPO or p-benzoquinones to generate diferric and deprotonated [Fe(2)S(2)((Pr)bbim)(2)](Et(4)N)(2) (1) and 1 equiv of TEMPOH or 0.5 equiv of p-benzohydroquinones, respectively. The reaction with TEMPO is the first well-defined example of concerted proton-electron transfer (CPET) at a synthetic ferric/ferrous [Fe-S] cluster.  相似文献   

18.
New organometallic clusters with the MFe2(mu3-S)2 core (M = Mo or Fe) have been synthesized from inorganic [MoFe3S4] or [Fe4S4] clusters under high pressure CO. The reaction of (Cl4-cat)2Mo2Fe6S8(PR3)6[R = Et, (n)Pr] with high pressure CO produced the crystalline [MoFe2S2]4+ clusters, (Cl4-cat)Mo(O)Fe2S2(CO)(n)(PR3)6-n[n= 4, Et =I, (n)Pr =II; n = 5, Et =III] after flash column chromatography. The similar [MoFe2S2]4+ cluster, (Cl4-cat)2MoFe2S2(CO)2(depe)(2)(IV), also has been achieved by the reactions of (Cl4-cat)MoFe3S3(CO)6(PEt3)2 with depe by reductive decoupling of the cluster. For the [Fe3(mu3-S)2]4+ cluster, [Fe4S4(PcHex3)4](BPh4) was reacted with high pressure CO to produce a new Fe3S2(CO)7(PcHex)(2)(V) compound. These reactions generalized the preparation of organometallic compounds from inorganic clusters. All the compounds have been characterized by single crystal X-ray crystallography. A possible reaction pathway for the synthesis of the MFe2(mu3-S) clusters (M = Mo or Fe) has also been suggested.  相似文献   

19.
The coordination chemistry of chelating silanedithiolato ligands has been investigated on Fe(II), Co(II), Pd(II), Cu(I), and Ag(I). Treatment of M(OAc)(2) (M = Fe, Co, Pd) with cyclotrisilathiane (SSiMe(2))(3) in the presence of Lewis bases resulted in formation of Fe(S(2)SiMe(2))(PMDETA) (1), Fe(S(2)SiMe(2))(Me(3)TACN) (2), Co(S(2)SiMe(2))(PMDETA) (3), and Pd(S(2)SiMe(2))(PEt(3))(2) (4) (PMDETA = N,N,N',N',N' '-pentamethyldiethylenetriamine; Me(3)TACN = 1,4,7-trimethyl-1,4,7-triazacyclononane). The analogous reactions of M(OAc) (M = Cu, Ag) in the presence of PEt(3) gave rise to the dinuclear complexes M(2)[(SSiMe(2))(2)S](PEt(3))(3) [M = Cu (5), Ag (6)]. Complexes were characterized in solution by (1)H, (31)P[(1)H], and (29)Si[(1)H] NMR and in the solid state by single-crystal X-ray diffraction. Mononuclear complexes 1-3 have a four-membered MS(2)Si ring, and these five-coordinate complexes adopt trigonal-bipyramidal (for the PMDETA adducts) or square-pyramidal (for the Me(3)TACN adduct) geometries. In dimer 6, the (SSiMe(2))(2)S(2)(-) silanedithiolato ligand bridges two metal centers, one of which is three-coordinate and the other four-coordinate. The chelating effect of silanedithiolato ligands leads to an increase in the stability of silylated thiolato complexes.  相似文献   

20.
The electronic structures of complexes of iron containing two S,S'-coordinated benzene-1,2-dithiolate, (L)(2)(-), or 3,5-di-tert-butyl-1,2-benzenedithiolate, (L(Bu))(2)(-), ligands have been elucidated in depth by electronic absorption, infrared, X-band EPR, and Mossbauer spectroscopies. It is conclusively shown that, in contrast to earlier reports, high-valent iron(IV) (d(4), S = 1) is not accessible in this chemistry. Instead, the S,S'-coordinated radical monoanions (L(*))(1)(-) and/or (L(Bu)(*))(1)(-) prevail. Thus, five-coordinate [Fe(L)(2)(PMe(3))] has an electronic structure which is best described as [Fe(III)(L)(L(*))(PMe(3))] where the observed triplet ground state of the molecule is attained via intramolecular, strong antiferromagnetic spin coupling between an intermediate spin ferric ion (S(Fe) = (3)/(2)) and a ligand radical (L(*))(1)(-) (S(rad) = (1)/(2)). The following complexes containing only benzene-1,2-dithiolate(2-) ligands have been synthesized, and their electronic structures have been studied in detail: [NH(C(2)H(5))(3)](2)[Fe(II)(L)(2)] (1), [N(n-Bu)(4)](2)[Fe(III)(2)(L)(4)] (2), [N(n-Bu)(4)](2)[Fe(III)(2)(L(Bu))(4)] (3); [P(CH(3))Ph(3)][Fe(III)(L)(2)(t-Bu-py)] (4) where t-Bu-py is 4-tert-butylpyridine. Complexes containing an Fe(III)(L(*))(L)- or Fe(III)(L(Bu))(L(Bu)(*))- moiety are [N(n-Bu)(4)][Fe(III)(2)(L(Bu))(3)(L(Bu)(*))] (3(ox)()), [Fe(III)(L)(L(*))(t-Bu-py)] (4(ox)()), [Fe(III)(L(Bu))(L(Bu)(*))(PMe(3))] (7), [Fe(III)(L(Bu))(L(Bu)(*))(PMe(3))(2)] (8), and [Fe(III)(L(Bu))(L(Bu)(*))(PPr(3))] (9), where Pr represents the n-propyl substituent. Complexes 2, 3(ox)(), 4, [Fe(III)(L)(L(*))(PMe(3))(2)] (6), and 9 have been structurally characterized by X-ray crystallography.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号