首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为实现宽带低频减振,本文将力振子和串联负电容的压电分流振子分别置于基体上下两侧,设计了混合弹性超材料梁。基于传递矩阵法建立了理论模型,用于计算混合弹性超材料梁的频散关系和动态有效参数,通过有限元法进行了验证。分别采用理论方法和数值方法研究了电路元件参数对混合弹性超材料梁的带隙和振动衰减特性的调节机理,通过与单振子超材料的带隙对比,分析了两种振子间的相互影响。结果表明:电路元件参数主要影响压电分流振子产生的带隙的位置、宽度及带隙内的振动衰减程度;两种振子的带隙重叠区域不一定为通带;两种振子会因为负动态有效刚度范围靠近而相互影响。本研究将为此类超材料的设计提供参考依据。  相似文献   

2.
Flexural wave propagation characteristics influence the impact noise generation of concrete structures that are found in building floors, railroads, bridges, and many other engineering structures. The flexural vibration of the structure is affected by concrete dynamic properties. The purpose of this study is to measure the concrete dynamic characteristics using a wave propagation approach. The flexural wave speeds, bending stiffness and their loss factors were measured. The measured characteristics are essential for understanding sound radiation and vibration dissipation capabilities of the concrete structures. Various concrete beam structures were made and tested. The dynamic stiffness and loss factor were influenced by its components and showed frequency-dependent variation, especially for the measured loss factor.  相似文献   

3.
???????????????????????????о?   总被引:1,自引:0,他引:1  
唐斌 《力学与实践》2009,31(4):32-36
针对连续Bernoulli-Euler和Timoshenko梁单元的动态刚度矩阵,分析了在使用连续梁单元 进行结构动态特性分析中的数值问题. 基于连续梁单元的运动方程,导出了连续 Bernoulli-Euler和Timoshenko梁单元的动态刚度矩阵. 分析了影响动态刚度矩阵中双曲函 数自变量的各个独立变量及其产生的影响,并给出了初估连续梁单元合理长度的方法. 使用 单一连续Bernoulli-Euler和Timoshenko梁单元的动态刚度矩阵分别进行了悬臂梁频响曲线 的数值求解. 研究表明,在合理选择连续梁单元的长度时,大多数工程结构的动态特性分析 中都不会产生数值问题.  相似文献   

4.
对于广义边界条件Euler-Bernoulli梁,采用相对描述方式建立了可描述梁整体运动和相对变形的几何非线性及其线性化动力学模型,应用线性变换得到了该类梁的线性经典动力学方程,得到了广义边界条件下梁的横向振动代数特征方程、特征函数及特征值的退化表达式.算例分析了边界小扰动对固支-固支梁横向振动特征的影响规律.  相似文献   

5.
S. Rajasekaran 《Meccanica》2013,48(5):1053-1070
The free vibration of axially functionally graded (FG) non-uniform beams with different boundary conditions is studied using Differential Transformation (DT) based Dynamic Stiffness approach. This method is capable of modeling any beam (Timoshenko or Euler, centrifugally stiffened or not) whose cross sectional area, moment of Inertia and material properties vary along the beam. The effectiveness of the method is confirmed by comparing the present results with existing closed form solutions and numerical results. In FG beams, flexural rigidity and mass density may take majority of functions including polynomials, trigonometric and exponential functions (converted to polynomial expressions). DT based Dynamic stiffness approach is proved to be a versatile and simple approach compared to many other methods already proposed.  相似文献   

6.
In this paper the method of semi-active damping of vibrations is presented. Free vibrations of a cantilever steel beam encapsulated in a sleeve, filled with the granular material are investigated. Various values of the partial vacuum generated in the granular structure allow to control the global dissipative properties of the discussed system. The loose grains encapsulated in the hermetic, polyvinyl chloride (PVC) envelope transform into a rigid, viscoplastic body as the jamming mechanism occurs when the underpressure is generated. Such phenomenon enables original strategies for semi-active damping. A detailed discussion related to the experimental results concerning the amplitude of vibration, damping, stiffness, and frequency of the continuous granular beam system is provided. The simplified Finite Element Model succeeded in describing the dynamic response of the structure.  相似文献   

7.
The model of a "spring-mass" resonator periodically attached to a piezoelectric/elastic phononic crystal(PC) nanobeam with surface effects is proposed, and the corresponding calculation method of the band structures is formulized and displayed by introducing the Euler beam theory and the surface piezoelectricity theory to the plane wave expansion(PWE) method. In order to reveal the unique wave propagation characteristics of such a model, the band structures of locally resonant(LR) elastic PC Eul...  相似文献   

8.
陆子  何毅翔  张岚斌  代胡亮  王琳 《力学学报》2022,54(11):3147-3156
流致振动现象广泛存在于机械、航空、土木和石油等重要工程领域, 为防止工程结构因流致振动行为而造成疲劳破坏, 有必要对稳定性、动力学响应及其振动控制做深入研究. 本文提出了一种由弹簧和质量块构成的非线性吸能器(nonlinear targeted energy transfer, NTET), 研究了该非线性吸能器对弹性支承圆柱体涡激振动的被动控制影响机制. 基于能量法推导了圆柱体涡激振动非线性被动控制的耦合动力学方程, 通过设计非线性弹簧?质量块构型的NTET, 进一步开展了涡激振动控制的实验研究, 并与理论预测结果进行了较好的对比, 获得提升涡激振动控制效果的最佳参数值. 研究发现, NTET的质量、弹簧刚度以及弹簧预应力等参数会对涡激振动控制效果产生显著的影响. 本文研究结果表明, 该耦合系统中圆柱体和NTET均表现出周期性的稳态振动响应, NTET质量的改变会显著影响系统的耦合频率. 在无预应力状态下, NTET质量越大、刚度越小时, 有更好的减振效果. 当弹簧预应力逐渐增大时, NTET的非线性刚度逐渐变弱, 会降低涡激振动控制性能. 参数分析表明: 随着涡激振动控制性能的提升, 圆柱体的振幅逐渐较小, NTET的振幅逐渐增大, 能量传递效率逐渐提高. 研究结果可为工程中涡激振动控制策略的高效设计提供有用的理论支撑和实验数据.   相似文献   

9.
Fatimah  S.  Verhulst  F. 《Nonlinear dynamics》2003,31(3):275-298
The possibility of suppressing self-excited vibrations of mechanicalsystems using parametric excitation is discussed. We consider a two-masssystem of which the main mass is excited by a flow-induced, self excitedforce. A single mass which acts as a dynamic absorber is attached to themain mass and, by varying the stiffness between the main mass and theabsorber mass, represents a parametric excitation. It turns out that forcertain parameter ranges full vibration cancellation is possible. Usingthe averaging method the fully non-linear system is investigatedproducing as non-trivial solutions stable periodic solutions and tori.In the case of a small absorber mass we have to carry out a second-ordercalculation.  相似文献   

10.
基于动力吸振器原理,在单自由度准零刚度隔振器基础上耦合可调频动力吸振器构成两自由度隔振系统。首先,对动力吸振器工作原理进行理论分析并提出其力学模型;其次,通过静力学分析,推导出系统满足零刚度条件时,各参数间的关系并分析其对系统刚度特性的影响;然后,建立两自由度隔振系统非线性动力学方程,利用谐波平衡法进行幅频响应解析分析,得到力传递率表达式;最后,数值分析动力吸振器阻尼、刚度、质量、激励力幅值和弹簧片有效长度对力传递率的影响规律,并与单自由度准零刚度隔振系统及两自由度线性隔振系统对比分析。结果表明:通过选择适当的动力吸振器参数不仅可以减小系统的起始隔振频率,增宽隔振频带,且还能加快系统力传递率在特定频段内的衰减速率,改善系统的低频隔振性能,实现激励频率的可适应性。  相似文献   

11.
The resonant frequency of flexural vibrations for a double tapered atomic force microscope (AFM) cantilever has been investigated by using the Timoshenko beam theory. In this paper, the effects of various parameters on the dimensionless frequency of vibrations of the AFM cantilever have been studied. The differential quadrature method (DQM) is employed to solve the nonlinear differential equations of motion. The results show that the resonant frequency decreases when the Timoshenko beam parameter or the cantilever thickness increases, and high-order modes are more sensitive to it. The first frequency is sensitive only in the lower range of contact stiffness, but the higher-order modes are sensitive to the contact stiffness in a larger range. Increasing the tip height increases the sensitivity of the vibrational modes in a limited range of normal contact stiffness. Furthermore, with increasing the breadth taper ratio, the frequency increases. The DQM results are compared with the exact solution for a rectangular AFM cantilever.  相似文献   

12.

A new multi-sensing scheme via nonlinear weakly coupled resonators is introduced in this paper, which can simultaneously detect two different physical stimuli by monitoring the dynamic response around the first two lowest modes. The system consists of a mechanically coupled bridge resonator and cantilever resonator. The eigenvalue problem is solved to identify the right geometry for the resonators to optimize their resonance frequencies based on mode localization in order to provide outstanding sensitivity. A nonlinear equivalent model is developed using the Euler–Bernoulli beam theory while accounting for the geometric and electrostatic nonlinearities. The sensor's dynamics are explored using a reduced-order model based on two-mode Galerkin discretization, which reveals the richness of the response. To demonstrate the proposed sensing scheme, the dynamic response of the weakly coupled resonator is investigated by tuning the stiffness and mass of the bridge and cantilever resonators, respectively. With its simple and scalable design, the proposed system shows great potential for intelligent multi-sensing detection in many applications.

  相似文献   

13.
李海勤  孔宪仁  刘源 《力学学报》2019,51(4):1189-1201
声黑洞(acoustic black hole, ABH)效应是基于弯曲波在变厚度薄壁结构中的传播性质发展起来的一种被动减振技术. 本文针对传统的线性声黑洞在高频段具有显著减振效果,而在低频段减振性能欠佳的问题,利用接触非线性提出了将能量从低频段传递到高频段的想法,旨在提升声黑洞的总体性能. 考虑声黑洞梁和位于其下方的接触挡板的碰撞振动问题,首先,通过实验验证了引入接触碰撞后系统的非线性机制及能量传递效应. 随后,基于欧拉-伯努利梁理论建立了声黑洞梁和挡板碰撞振动的数值模型,并分析了模型的收敛性. 该模型遵循模态法的求解过程,并利用有限差分法处理变厚度梁的特征值问题. 接触作用力借鉴于Hertzian接触定律来刻画,阻尼层的影响则通过Ross-Kerwin-Ungard模型求解. 基于数值模型,着重分析了含接触非线性时,声黑洞梁的能量传递与衰减特性及其对声黑洞减振性能的提升,并考察了接触刚度、接触点位置和初始间隙等接触参数的影响. 结果表明引入接触非线性后,振动能量可以从声黑洞性能欠佳的低频段传递到声黑洞效果显著的高频区域,梁的能量衰减速度显著加快,声黑洞的整体减振性能得到了有效地提高.   相似文献   

14.
The dynamic transfer matrix is formulated for a straight uniform and axially loaded thin-walled Bernoulli–Euler beam element whose elastic and inertia axes are not coincident by directly solving the governing differential equations of motion of the beam element. Bernoulli–Euler beam theory is used, and the cross section of the beam does not have any symmetrical axes. The bending vibrations in two perpendicular directions are coupled with torsional vibration and the effect of warping stiffness is included. The dynamic transfer matrix method is used for calculation of exact natural frequencies and mode shapes of the nonsymmetrical thin-walled beams. Numerical results are given for a specific example of thin-walled beam under a variety of end conditions, and exact numerical solutions are tabulated for natural frequencies and solutions calculated by the other method are also tabulated for comparison. The effects of axial force and warping stiffness are also discussed.  相似文献   

15.
Here, the large amplitude free flexural vibrations of isotropic/laminated orthotropic rings are investigated, using a shear flexible curved beam element based on field consistency principle. A laminated refined beam theory is introduced for developing the element, which satisfies the interface transverse shear stress and displacement continuity, and has a vanishing shear stress on the inner and outer surfaces of the beam. The formulation includes in-plane and rotary inertia effects, and the non-linearity due to the finite deformation of the ring. The governing equations obtained using Lagrange's equations of motion are solved through the direct integration technique. Amplitude-frequency relationships evaluated from the dynamic response history are examined. Detailed numerical results are presented considering various parameters such as radius-to-thickness ratio, circumferential wave number and ovality for isotropic and laminated orthotropic rings. The nature and degree of the participation of various modes in non-linear asymmetric vibration of oval ring brought out through the present study are useful for accurate modelling of the closed non-circular structures.  相似文献   

16.
A new dynamic model of a rotating flexible beam with a concentrated mass located in arbitrary position is derived based on the absolute nodal coordinate formulation, and its modal characteristics are investigated in this paper. To consider the concentrated mass at an arbitrary location of the beam, a Dirac’s delta function is used to express the mass per unit length of the beam. Based on the proposed dynamic model, the frequency analysis is performed. The nonlinear equation is transformed into the linear one via employing the linear perturbation analysis method. The stiffness matrix of static equilibrium of the system under the deformed condition is obtained, in which the effect of coupling between the longitudinal deformation and transversal deformation is included. This means even if only the chordwise bending equation is solved, the longitudinal vibration effect can be still considered. As we know, once the longitudinal deformation is large, it will significantly affect the chordwise bending vibration. So the proposed model in this paper is more accurate than the traditional dynamic models which are usually lack of the coupling terms between the longitudinal deformation and transversal deformation. In fact, the traditional dynamic models for the chordwise vibration analysis in the existing literature are usually linear due to neglecting the coupling terms, and consequently, they are only suitable for the modal characteristic analysis of a beam under small deformations. In order to get some general conclusions of the natural frequencies and mode shapes, the equation which governs the chordwise bending vibration of the rotating beam is transformed into a dimensionless form. The dynamic model presented in this paper is nonlinear and can be conveniently used to analyze the modal characteristics of a rotating flexible beam with large deformations. To demonstrate the power of the new dynamic model presented in this paper, the dynamic simulations involving the comparisons between the different frequencies obtained using the model proposed in this paper and the models in the existing literature and the investigating in frequency veering and mode shift phenomena are given. The simulation results show that the angular velocity of the flexible beam will give rise to the phenomena of the natural frequency loci veering and the associated mode shift which is verified in the previous studies. In addition, the phenomena of the natural frequency loci veering rather than crossing can be observed due to the changing of the magnitude of the concentrated mass or of the location of the concentrated mass which are found for the first time. Furthermore, there is an interesting phenomenon that the natural frequency loci will veer more than once due to different types of mode coupling between the bending and stretching vibrations of the rotating beam. At the same time, the mode shift phenomenon will occur correspondingly. Additionally, the characteristics of the vibration nodes are also investigated in this paper.  相似文献   

17.
Consideration is given to the dynamic response of a Timoshenko beam under repeated pulse loading. Starting with the basic dynamical equations for a rotating radial cantilever Timoshenko beam clamped at the hub in a centrifugal force field, a system of equations are derived for coupled axial and lateral motions which includes the transverse shear and rotary inertia effects, as well. The hyperbolic wave equation governing the axial motion is coupled with the flexural wave equation governing the lateral motion of the beam through the velocity-dependent skew-symmetric Coriolis force terms. In the analytical formulation, Rayleigh-Ritz method with a set of sinusoidal displacement shape functions is used to determine stiffness, mass and gyroscopic matrices of the system. The tip of the rotating beam is subjected to a periodic pulse load due to local rubbing against the outer case introducing Coulomb friction in the system. Transient response of the beam with the tip deforming due to rub is discussed in terms of the frequency shift and non-linear dynamic response of the rotating beam. Numerical results are presented for this vibro-impact problem of hard rub with varying coefficients of friction and the contact-load time. The effects of beam tip rub forces transmitted through the system are considered to analyze the conditions for dynamic stability of a rotating blade with intermittent rub.  相似文献   

18.
The problem of minimizing the dynamics response of a damped cantilever Timoshenko beam subjected to earthquake excitation is investigated in this paper. The ground acceleration is expressed in terms of a Fourier series that is modulated by an enveloping function. The method of lines and modal approach are developed for analyzing the eigenvalues and the flexural vibrations. A magneto rheological damper is proposed to reduce the vibration of the structure. The device is localized at a specific point of the beam. A modal shape which characterizes the vibration of the uncontrolled and controlled system is obtained. The condition of stability of the controlled system is derived using the Routh–Hurwitz criterion.  相似文献   

19.
In this work, a model of the stepped Timoshenko beam in presence of deflection and rotation discontinuities along the span is presented. The proposed model relies on the adoption of Heaviside’s and Dirac’s delta distributions to model abrupt and concentrated, both flexural and shear, stiffness discontinuities of the beam that lead to exact closed-form solutions of the elastic response in presence of static loads. Based on the latter solutions, a novel beam element for the analysis of frame structures with an arbitrary distribution of singularities is here proposed. In particular, the presented closed-form solutions are exploited to formulate the displacement shape functions of the beam element and the relevant explicit form of the stiffness matrix. The proposed beam element is adopted for a finite element discretization of discontinuous framed structures. In particular, by means of the introduction of a mass matrix consistent with the adopted shape functions, the presented model allows also the dynamic analysis of framed structures in presence of deflection and rotation discontinuities and abrupt variations of the cross-section. The presented formulation can also be easily employed to conduct a dynamic analysis of damaged frame structures in which the distributed and concentrated damage distributions are modelled by means of equivalent discontinuities. As an example, a simple portal frame, under different damage scenarios, has been analysed and the results in terms of frequency and vibration modes have been compared with exact results to show the accuracy of the presented discontinuous beam element.  相似文献   

20.
Measurement of Dynamic Properties of Viscoelastic Materials   总被引:1,自引:0,他引:1  
An improved method to measure the dynamic viscoelastic properties of elastomers is proposed. The method is based on the analysis of forced oscillation of a cylindrical sample loaded with an inertial mass. No special equipment or instrumentation other than the ordinary vibration measurement apparatus is required. Upper and lower surfaces of the viscoelastic material sample were bonded to a load disc and a rigid base plate, respectively. The rigid base plate was subject to forced oscillations driven by a vibration exciter. Two accelerometers were attached to monitor the displacement of the base plate and the load disc. The recorded magnitude ratio and the phase difference between the load disc and the base plate vibrations represent the axial, dynamic deformation of the sample. The data are sufficient to obtain the dynamic properties of the sample, oscillation properties of vibration exciter, whereas the sensitivity of gauges having no effect on the calculation results. For accurate calculation of the properties, a two-dimensional numerical model of cylindrical sample deformation was used. Therefore, a form factor, which takes into account the sample sizes in one-dimensional models, is not required in this method. Typical measurement of the viscoelastic properties of a silicone rubber Silastic® S2 were measured over the frequency range from 10 Hz to 3 kHz under deformations (ratio of vibration magnitude to sample thickness) from 10?4% to 5%. It was shown that the modulus of elasticity and the loss tangent fall on a single curve when the ratio of load mass to sample mass changed from 1 to 20. When the sample diameter was varied from 8 to 40 mm, the modulus of elasticity fall on the same curve, but the loss tangent curves showed some degree of scatter. Studied temperature dependence and nonlinear behavior of viscoelastic properties is found not to be associated with this effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号