首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bipolar electrode-based (BPE-based) electrochromic devices have garnered increasing attention in the past decade. These BPE-based electrochromic devices have been used for analytical health monitoring, point-of-care (POC) diagnostics, and chemical sensing. In this review, we highlight recent progress made regarding BPE-based electrochromic devices constructed for these analytical applications. Various, available electrochromic materials are summarized in the first section, after which the different device types (e. g., paper-based and self-powered) are discussed. Biological- and chemical-based analytical demonstrations of these devices are then reviewed. Finally, we conclude this review with a perspective on the future developments of BPE-based electrochromic devices in analytical applications.  相似文献   

2.
紫精类电致变色材料的制备和机理   总被引:1,自引:0,他引:1  
曹良成  王跃川 《化学进展》2008,20(9):1353-1360
1,1'-二取代4,4'-联吡啶盐通常称作紫精(viologen),紫精以及接有紫精基团的聚合物(polyviologen)有优异的电致和光致变色性能,在新一代电致变色器件、显示器件和智能窗等方面有很好的应用前景。文章综述了紫精和紫精聚合物的制备、结构与性能、电致变色机理、功能器件设计以及在化学合成、纳米功能符合等方面的研究进展,并提出例如今后的重要研究方向。  相似文献   

3.
以六氯环三磷腈作为核心、 紫精为电致变色活性基, 合成了一种新型有机-无机杂化电致变色材料——六(1-乙基-4,4'-联吡啶-甲基苯氧基)环三磷腈(PHV 2+). 通过傅里叶变换红外光谱(FTIR)、 X射线衍射(XRD)及核磁共振氢谱( 1H NMR)表征了PHV 2+的结构. 优良的水溶性使得该化合物可以通过简单的方法构造一个以聚乙烯醇(PVA)为凝胶基质的电致变色水凝胶, 具有成本低廉及无毒害的优点. 以氟掺杂氧化锡(FTO)涂层玻璃作为电极材料, PHV 2+作为电致变色材料制备了PHV 2+/PVA/KCl电致变色器件(PHV 2+/PVA/KCl ECD). 该电致变色器件在2.1 V电压下由淡黄色变为紫色, 颜色变化明显, 并且该颜色变化可以循环500次; 器件在526 nm处的光学对比度达到62.19%. 良好的电致变色性质使该化合物在电致变色器件方面具有潜在应用价值.  相似文献   

4.
谷欣  王文庆  侯钧贺  高露  黄明华  苏革 《应用化学》2022,39(9):1345-1359
在外加电压的作用下,电致变色材料的光学性能(颜色、透光率等)能够可控制、可逆地变化,在节能减排领域有重要应用前景。随着相关研究的不断创新、深入和拓展,单一组分的电致变色材料因受到其自身结构和性能的限制,不能表现出人们所期望的电致变色性能,并且在结构和性能上不具有可设计和调控性,因而越来越无法满足实际应用的需求。与非复合电致变色材料相比较,复合型材料在这方面具有明显的优势,其优势体现在通过合理的材料设计,借助复合材料各组分的协调作用,充分激发各组分的优点,克服各自的缺点,可以获得结构和性能优异的电致变色材料。因此,近年来越来越多的研究聚焦于复合型电致变色材料。目前已开展研究的复合型电致变色材料的种类很多,根据复合组分是无机材料还是有机材料来对复合型电致变色材料分类的话主要可分为无机-无机复合、无机-有机复合和有机-有机复合3大类。相比有机电致变色材料,无机电致变色材料在材料成分控制、机械性能、光调制、使用稳定性、寿命等方面优势显著,因此,单一组分的和复合型的无机电致变色材料始终是本领域研究的重要方向。因此,本文致力于近年来无机-无机复合电致变色材料、器件和电解质的研究现状和未来的发展动态,对其研究进展、所存在的问题和发展趋势进行了归纳总结,为复合型电致变色材料的进一步研发和应用提供依据。  相似文献   

5.
An electrochromic photonic crystal (EPC) display device that combines chemical (electrochromic) and physical (photonic) coloring mechanisms is reported for the first time. This EPC exhibits superior and versatile color tunability. The TiO2 inverse opals fabricated by atomic layer deposition are adopted as EPC material. Results show that the photonic band gaps selectively modified the optical properties of the EPC and enabled facile tuning of electrochromic colors. In addition, the reversible photonic and photonic modified electrochromic coloring states with insertion/extraction of lithium ions enable novel and promising approaches for future display applications.  相似文献   

6.
1-/2-phenyl substituted 9,10-anthraquinones were synthesized via Suzuki coupling reactions of 1-/2-iodo-9,10-anthraquinones with benzeneboronic acid. They are efficient and reversible electrochromic materials and their solid electrochromic devices were prepared. When reduced, the device color of 1-phenyl-9,10-anthraquinone shifts from yellow to claret while that of 2-phenyl-9,10-anthraquinone switches from yellow-green to a dark blue-purple. Their different characteristics and behaviors in electrochromic devices are only determined by the different substituted positions of the phenyl group. They are potentially to be widely applied in commercial application for the excellent behaviors plus the inexpensive starting materials and short synthetic routes.  相似文献   

7.
基于聚苯胺电致变色高聚物、采用反射型电致变色器件结构模型,以柔性导电织物作为电极,构建了可控变色织物,可在-1.0~+1.0 V低电压范围内实现颜色变化显著的黄色和绿色的可逆响应.系统研究了变色织物在不同电压、不同弛豫时间及不同颜色工作电极下的L*a*b*,ΔE*值及反射率曲线,且讨论了透射型电致变色器件和电致变色织物的区别.随着正电压的增加,变色织物对应的a*b*依次减小,蓝绿色加深;随着负电压的增加,变色织物对应的a*b*依次增加,变色织物黄色加深.撤去电压后变色织物发生放电弛豫,慢慢回复到未加电压时的本征态.工作电极底色对电致变色织物也有显著的影响.变色织物的断电放电弛豫时间低于透射型电致变色器件.  相似文献   

8.
Electrochromic materials have been extensively investigated for their significant potential in information display, automotive, sensor and smart windows[1]. Many studies have been carried out on the inorganic electrochromic materials, such as WO3, MoO3, NiOx and so on[2]. In this paper, We first report the electrochromic behavior of rhodium oxide film prepared by sol-gel method on transparent conductor substrate. The film exhibited reversible two color (from bright yellow to dark green) electrochromic behavior with satisfactory contrast at anodic and cathodic forms when the applied potential was reversed successively.  相似文献   

9.
The electrochromic materials have received immense attention for the fabrication of smart optoelectronic devices. The alteration of the redox states of the electroactive functionalities results in the color change in response to electrochemical potential. Even though transition metal oxides, redox-active small organic molecules, conducting polymers, and metallopolymers are known for electrochromism, advanced materials demonstrating multicolor switching with fast response time and high durability are of increasing demand. Recently, two-dimensional covalent organic frameworks (2D COFs) have been demonstrated as electrochromic materials due to their tunable redox functionalities with highly ordered structure and large specific surface area facilitating fast ion transport. Herein, we have discussed the mechanistic insights of electrochromism in 2D COFs and their structure-property relationship in electrochromic performance. Furthermore, the state-of-the-art knowledge for developing the electrochromic 2D COFs and their potential application in next-generation display devices are highlighted.  相似文献   

10.
A facile approach of carbon nanotubes (CNTs) functionalized poly(methylpyrrole) [pMPy] electrosynthesized in hydrophobic ionic liquid for fabrication of electrochromic (EC) devices is discussed. Clear change from brown (oxidized) to pale yellow (neutral) color is demonstrated with robust cycle life. This synthesis route can be exploited to fabricate polymers from other organic conjugated systems and provide an avenue for applications requiring stable redox polymers in electrochromic devices.  相似文献   

11.
Electrochromic devices, which dynamically change color under applied potentials, are widely studied for use in energy-efficient smart windows. The operation of electrochromic materials and devices involves the gain or loss of electrons and simultaneous insertion/extraction of ions with opposite charges to balance the internal electric fields. The performance is therefore limited by kinetics of charge transport in the electrochromic materials as well as ion migration in the electrolyte, materials and at their interfaces. Nanostructured electrochromic materials have an extremely short charge transport distance facilitating charge transport in electrochromic devices and large specific surface area for interaction with electrolytes, and thus may provide fast charge and ions transport, high electrochemical activities and remarkable enhancement of electrochromic properties. The recent progress in application of nanostructures, including nanoparticles, 1D and 2D nanostructures, in metal oxide electrochromic materials and devices is reviewed. A perspective on the development trends in electrochromic materials and devices is also proposed.  相似文献   

12.
The electrochromic/electrofluorochromic (EC/EFC) dual-functional polymers have gained intense attention owing to the unique electrochemically induced absorption and emission change simultaneously. Most of the efforts have recently been devoted to improving their EC/EFC performance. However, the practical application studies of the EC/EFC polymers are still in their infancy. Herein, we present a poly(amic acid) based material bearing high solid fluorescence-efficiency AIEgens and electroactive oligoaniline groups, featuring a good electrochromic performance with desirable optical contrast, high coloration efficiency, and outstanding durability. This occurs in tandem with electrofluorochromic behavior with ideal fluorescence contrast and moderate switching speed. By virtue of the versatile electrospinning technique, we manufactured a nanofibrous test strip base on the resultant polymer for glucose determination. The colorimetric/fluorometric dual-determination of glucose is carried out with an obvious color change from gray to dark green, along with a drastic fluorescence change from light to dark, which exhibits numerous advantages of easy operation, rapid detection, favorable selectivity, and unique repeated use feature. Furthermore, the nanofibrous test strips also provide reliable results in the glycosuria test. This strategy shows distinct promise for future sensing applications.  相似文献   

13.
Summary: Polymers that have one of the three complementary colors (red, green, and blue, RGB) in the neutral state and high transmissivity in the oxidized state are the key materials towards use in electrochromic devices and displays. Although many neutral state red and blue polymers have been reported up to date, green polymers with highly transmissive oxidized states, high optical contrasts, fast switching times, and advanced long-term switching stabilities were essentially missing in the literature. This paper reviews our previous efforts towards realization of neutral state green polymers with highly transmissive oxidized state. The key to this problem was found to be the synthesis of donor-acceptor polymers bearing benzothiadiazole or quinoxaline derivatives as the acceptor and electron rich 3,4-ethylenedioxythiophene unit as the donor component. Green neutral state polymeric materials with highly transmissive oxidized state with excellent electrochromic properties have been realized with the design and synthesis of these types of materials. A solution processable green polymeric material has also been realized via chemical polymerization that has shown all superior properties of the electrochemically synthesized counterparts.  相似文献   

14.
由于独特的光、电、磁以及催化性质,功能性纳米材料的研究已经渗透到各个学科并在不同领域展示出潜在的应用前景,尤其是利用纳米材料构建功能性电极界面、研究其电化学行为并发展新颖的电化学纳米器件引起了了人们的广泛关注. 本篇综述中,主要介绍作者研究小组在以功能性纳米材料构建新颖的电化学界面的最新进展,集中关注其在电化学传感器、燃料电池以及光谱电化学中的应用. 这些纳米材料的应用极大地增强了电子转移、提高了电化学传感器的灵敏度以及燃料电池的催化效率. 作者也通过合成一些光谱匹配的荧光以及电致变色纳米材料构建新颖的荧光光谱电化学器件,同时在材料的合成组装、多重刺激响应体系以及多功能化进行探索. 最后,作者对这类基于纳米材料的电化学器件的发展和应用予以展望.  相似文献   

15.
Stable isotope dilution assays in mycotoxin analysis   总被引:1,自引:0,他引:1  
The principle and applications of stable isotope dilution assays (SIDAs) in mycotoxin analysis are critically reviewed. The general section includes historical aspects of SIDAs, the prerequisites and limitations of the use of stable isotopically labelled internal standards, and possible calibration procedures. In the application section actual SIDAs for the analysis of trichothecenes, zearalenone, fumonisins, patulin, and ochratoxin A are presented. The syntheses and availability of labelled mycotoxins for use as internal standards is reviewed and specific advances in food analysis and toxicology are demonstrated. The review indicates that LC–MS applications, in particular, require the use of stable isotopically labelled standards to compensate for losses during clean-up and for discrimination due to ion suppression. As the commercial availability of these compounds continues to increase, SIDAs can be expected to find expanding use in mycotoxin analysis.  相似文献   

16.
A series of ionic liquids containing different paramagnetic anions have been prepared and all show paramagnetic behavior with potential applications for magnetic and electrochromic switching as well as novel magnetic transport; also, the tetraalkylphosphonium-based ionic liquids reveal anomalous magnetic behavior.  相似文献   

17.
Capillary electrophoresis-electrospray ionization-mass spectrometry has the potential to become a preferred tool for the analysis of biological mixtures and other complex samples. The development of improved interfaces in the past twenty years has been critical in demonstrating the feasibility of this technique. However, a compromise still exists between interfaces that give optimal performance and those that are practical for commercial applications. The first section of this review focuses on the technological advances in CE-ESI-MS as they relate to the key interface features for both sheath-flow and sheathless systems: delivery of the sheath liquid, shaping of the emitter tip, formation of electrical contact, and practicality in terms of ease of use and lifetime. In the second section, we review the fundamental processes that affect interface performance. Because of the complex natures of both capillary electrophoresis and electrospray ionization, flow rate, arrangement of the electrical circuit, electrochemistry, tip geometry and location of electrical contact must all be carefully managed in the design of a successful interface.  相似文献   

18.
A concept for light-powered visual detection of glucose is developed. The detection mechanism is based on pairing a photo-active anode with an electrochromic counter electrode. The photoelectrochemical reaction changes the oxidation state of the analyte, leading to a change in the color of the electrochromic material, which makes visual detection possible. All of the electrical charge required to change the color of the electrochromic material is supplied by the photoelectrochemical reaction powered by visible light, so no conventional energy source is required. The proposed system consists of hematite modified with nickel hydroxide (Ni(OH)2) as the photoanode, and Prussian blue deposited on a fluorine-doped tin oxide electrode as the electrochromic cathode. Under illumination, photo-oxidation of glucose at the photoanode is followed by reduction of Prussian blue to Prussian white at the cathode. The presence of glucose can therefore be detected visually as decolorization of Prussian blue occurs.  相似文献   

19.
设计合成了一种新型的基于咔唑单元的树枝状3, 6-双噻吩咔唑衍生物(BTCPh),通过电化学聚合法制备出其均聚物及与3, 4-乙烯二氧噻吩(EDOT)的共聚物薄膜.利用电化学工作站-紫外可见光谱联用装置对两种聚合物的光谱电化学和电致变色(EC)性能进行表征.测试结果表明,均聚物(PBTCPh)薄膜在不同电压下可显示黄、绿、蓝、灰四种颜色;而EDOT单元的引入使共聚物P(BTCPh-EDOT)进一步增加了掺杂态,从而显示出更加丰富的五种颜色(橙、绿、棕绿、蓝、灰).此外,两种聚合物薄膜均具有良好的光学对比度和快速的响应速度,因而使其在智能窗及显示器方面展现了潜在的应用前景.  相似文献   

20.
A novel electrochromic material, poly(indole-6-carboxylic acid) (PIn), and its application in electrochromic devices (ECDs) are discussed. PIn was switched between yellow in the reduced state and green in the oxidized state. Electrochromic switching of PIn film shows that it has fast switching time and high optical contrast. ECD based on PIn and poly(3,4-ethylenedioxythiophene) (PEDOT) was also fabricated and characterized. The response time of this device was found to be 1.0 s and the optical contrast was 45%. The coloration efficiency (CE) was calculated to be 510 cm2 C?1. Clear change from green (neutral) to blue-violet color (oxidized) of ECD is demonstrated with robust cycle life. These results provide an avenue for applications of polyindole family in electrochromic devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号