首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper describes the use of a ruthenium complex ((bis(2,2'-bipyridine)-4'-methyl-4-carboxybipyridine-ruthenium-N-succidimyl ester-bis(hexafluorophosphate), abbreviated below as ASCQ_Ru) commercially available and chemically pure. This new ruthenium complex ASCQ_Ru brings an activated ester, allowing the selective acylation of amino acid side chain amines for the post migration staining of proteins separated in 1-DE and 2-DE. The protocol used is a simple three-step protocol fixing the proteins in the gel, staining and then washing, as no lengthy destaining step is required. First the critical staining step was optimized. Although in solution the best described pH for acylating proteins with this reagent is phosphate buffer at pH 7.0, we found that best medium for in-gel staining is unbuffered ACN/water solution (20/80 v/v). The two other steps are less critical and classical conditions are satisfactory: fixing with 7% acetic acid/10% ethanol solution and washing four times for 10 min with water. Sensitivity tests were performed using 1-DE on protein molecular weight markers. We obtained a higher sensitivity than SYPRO Ruby with a detection limit of 80 pg of protein per well. However, contrary to SYPRO Ruby, ASCQ_Ru exhibits a logarithmic dependency on the amount of protein. The dynamic range is similar to SYPRO Ruby and is estimated between three and four orders of magnitude. Finally, the efficiency of the post migration ASCQ_Ru staining for 2-D gel separation is demonstrated on the whole protein extract from human colon carcinoma cells lines HCT 116. ASCQ_Ru gave the highest number of spot detected compared to other common stains Colloidal CBB, SYPRO Ruby and Deep Purple.  相似文献   

2.
A simple and sensitive fluorescent staining method for the detection of proteins in SDS‐PAGE, namely IB (improved 4,4′‐dianilino‐1,1′‐binaphthyl‐5,5′‐disulfonic acid) stain, is described. Non‐covalent hydrophobic probe 4,4′‐dianilino‐1,1′‐binaphthyl‐5,5′‐disulfonic acid was applied as a fluorescent dye, which can bind to hydrophobic sites in proteins non‐specifically. As low as 1 ng of protein band can be detected briefly by 30 min washing followed by 15 min staining without the aiding of stop or destaining step. The sensitivity of the new presented protocol is similar to that of SYPRO Ruby, which has been widely accepted in proteomic research. Comparative analysis of the MS compatibility of IB stain and SYPRO Ruby stain allowed us to address that IB stain is compatible with the downstream of protein identification by PMF.  相似文献   

3.
SYPRO Ruby dye is a permanent stain comprised of ruthenium as part of an organic complex that interacts noncovalently with proteins. SYPRO Ruby Protein Gel Stain provides a sensitive, gentle, fluorescence-based method for detecting proteins in one-dimensional and two-dimensional sodium dodecyl sulfate-polyacrylamide gels. Proteins are fixed, stained from 3h to overnight and then rinsed in deionized water or dilute methanol/acetic acid solution for 30 min. The stain can be visualized using a wide range of excitation sources commonly used in image analysis systems including a 302 nm UV-B transilluminator, 473 nm second harmonic generation (SHG) laser, 488 nm argon-ion laser, 532 nm yttrium-aluminum-garnet (YAG) laser, xenon arc lamp, blue fluorescent light bulb or blue light-emitting diode (LED). The sensitivity of SYPRO Ruby Protein Gel Stain is superior to colloidal Coomassie Brilliant Blue (CBB) stain or monobromobimane labeling and comparable with the highest sensitivity silver or zinc-imidazole staining procedures available. The linear dynamic range of SYPRO Ruby Protein Gel stain extends over three orders of magnitude, which is vastly superior to silver, zinc-imidazole, monobromobimane and CBB stain. The fluorescent stain does not contain superfluous chemicals (formaldehyde, glutaraldehyde, Tween-20) that frequently interfere with peptide identification in mass spectrometry. While peptide mass profiles are severely altered in protein samples prelabeled with monobromobimane, successful identification of proteins by peptide mass profiling using matrix-assisted laser desorption/ionization mass spectrometry was easily performed after protein detection with SYPRO Ruby Protein Gel stain.  相似文献   

4.
Yan JX  Harry RA  Spibey C  Dunn MJ 《Electrophoresis》2000,21(17):3657-3665
While the classical silver stain has been the method of choice for high sensitivity protein visualization on two-dimensional gel electrophoresis (2-D PAGE), post-electrophoretic fluorescent staining with the SYPRO group of dyes has emerged to challenge silver staining for proteome analysis. The latter offers improved sensitivity, higher dynamic range and easy handling. However, most of the published data were derived from analysis of 1-D gel separations. In this work, we have focused on three commercially available fluorescent dyes, SYPRO Ruby, SYPRO Orange and SYPRO Red (Molecular Probes, Eugene, OR, USA) and studied their sensitivity and dynamic range on 2-D PAGE. The use of a multiwavelength fluorescent scanner to image 2-D protein profiles visualized with fluorescent staining is discussed, and a detailed comparison with analysis by silver staining is also provided. These results demonstrate the advantages of using SYPRO dyes, which are in agreement with the literature based on 1-D gel electrophoresis, and give a more realistic understanding of the performance of these fluorescent dyes with 2-D PAGE.  相似文献   

5.
Mass spectrometry compatibility of two-dimensional gel protein stains   总被引:9,自引:0,他引:9  
As proteomic technology evolves, protein staining sensitivity is constantly being improved, enabling researchers to better visualize the proteome of their system. The current challenge is to balance the limits of detection of protein visualization with those of the mass spectrometric methods. In this report, mass spectra generated from human serum or rat liver proteins stained with either colloidal Coomassie blue, Daiichi silver, SYPRO Orange, SYPRO Red, SYPRO Ruby, or SYPRO Tangerine are compared. It has been concluded that the newest generation of fluorescent protein stains, compared with traditional staining methods, are more compatible to matrix-assisted laser desorption/ionization (MALDI) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) methods. The number of database matches obtained using each mass spectrometry method and the percent sequence coverage obtained from trypsin digested proteins stained using these six methods is provided.  相似文献   

6.
SYPRO Tangerine stain is an environmentally benign alternative to conventional protein stains that does not require solvents such as methanol or acetic acid for effective protein visualization. Instead, proteins can be stained in a wide range of buffers, including phosphate-buffered saline or simply 150 mM NaCl using an easy, one-step procedure that does not require destaining. Stained proteins can be excited by ultraviolet light of about 300 nm or with visible light of about 490 nm. The fluorescence emission maximum of the dye is approximately 640 nm. Noncovalent binding of SYPRO Tangerine dye is mediated by sodium dodecyl sulfate (SDS) and to a lesser extent by hydrophobic amino acid residues in proteins. This is in stark contrast to acidic silver nitrate staining, which interacts predominantly with lysine residues or Coomassie Blue R, which in turn interacts primarily with arginine and lysine residues. The sensitivity of SYPRO Tangerine stain is similar to that of the SYPRO Red and SYPRO Orange stains - about 4-10 ng per protein band. This detection sensitivity is comparable to colloidal Coomassie blue staining and rapid silver staining procedures. Since proteins stained with SYPRO Tangerine dye are not fixed, they can easily be eluted from gels or utilized in zymographic assays, provided that SDS does not inactivate the protein of interest. This is demonstrated with in-gel detection of rabbit liver esterase activity using alpha-naphthyl acetate and Fast Blue BB dye as well as Escherichia coli beta-glucuronidase activity using ELF-97 beta-D-glucuronide. The dye is also suitable for staining proteins in gels prior to their transfer to membranes by electroblotting. Gentle staining conditions are expected to improve protein recovery after electroelution and to reduce the potential for artifactual protein modifications such as the alkylation of lysine and esterification of glutamate residues, which complicate interpretation of peptide fragment profiles generated by mass spectrometry.  相似文献   

7.
The fluorescence of proteins stained with Deep Purple and SYPRO Ruby was measured over a time course of UV transillumination to determine the relative photostability of each stain. Mean spot fluorescence (n = 200 matched spots) in gels stained with Deep Purple decreased 27% following 2 min of UV transillumination, compared to SYPRO Ruby, which decreased 17%. After 19 min, an 83% decrease in Deep Purple fluorescence was observed, compared to 44% for SYPRO Ruby. By interpolation, the half-life of Deep Purple fluorescence was estimated to be approximately 6 min. The half-life of SYPRO Ruby fluorescence was not reached during the 19 min time course. Further, differential staining of proteins was observed in gels stained with Deep Purple and SYPRO Ruby as compared to colloidal Coomassie Brilliant Blue and silver staining.  相似文献   

8.
A dichromatic method for measuring the specific activity of beta-glucuronidase from complex cell homogenates or partially purified protein fractions is presented. Dual fluorescence is achieved by using the green emitting fluorogenic substrate ELF 97 beta-D-glucuronide to detect beta-glucuronidase activity, followed by the red emitting SYPRO Ruby protein gel stain or SYPRO Ruby IEF gel stain to detect the remaining proteins in the electrophoretic profile. Both ELF 97 alcohol, the highly fluorescent hydrolytic product generated from the enzyme substrate, and the SYPRO Ruby total protein stains are maximally excited by ultraviolet illumination. ELF 97 alcohol emits maximally at 525 nm while the SYPRO Ruby dyes emit maximally at 610 nm. Since ELF 97 beta-glucuronide is a precipitating substrate, it allows precise localization of beta-glucuronidase activity with minimal band diffusion. The staining method is simple and direct, without the requirement for ancillary coupling reactions. Dichromatic protein detection is demonstrated after sodium dodecyl sulfate(SDS)-polyacrylamide gel electrophoresis, carrier ampholyte-mediated isoelectric focusing or two-dimensional gel electrophoresis.  相似文献   

9.
The characteristics of protein detection and quantitation with SYPRO Ruby protein gel stain in one- and two-dimensional polyacrylamide gels were evaluated. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analyses of three different purified recombinant proteins showed that the limits of detection were comparable to the limits of detection with ammoniacal silver staining and were protein-specific, ranging from 0.5 to 5 ng. The linearity of the relationship between protein level and SYPRO Ruby staining intensity also depended on the individual protein, with observed linear dynamic ranges of 200-, 500-, and, 1000-fold for proteins analyzed by SDS-PAGE. SYPRO Ruby protein gel stain was also evaluated in two-dimensional electrophoretic (2-DE) analysis of Escherichia coli proteins. The experiment involved analysis of replicates of the same sample as well as dilution of the sample from 0.5 to 50 nug total protein across gels. In addition to validating the 2-DE system itself, the experiment was used to evaluate three different image analysis programs: Z3 (Compugen), Progenesis (Nonlinear Dynamics), and PDQuest (Bio-Rad). In each program, we analyzed the 2-DE images with respect to sensitivity and reproducibility of overall protein spot detection, as well as linearity of response for 20 representative proteins of different molecular weights and pI. Across all three programs, coefficients of variation (CV) in total number of spots detected among replicate gels ranged from 4 to 11%. For the 20 representative proteins, spot quantitation was also comparable with CVs for gel-to-gel reproducibility ranging from 3 to 33%. Using Progenesis and PDQuest, a 1000-fold linear dynamic range of SYPRO Ruby was demonstrated with a single known protein. These two programs were more suitable than Z3 for examining individual protein spot quantity across a series of gels and gave comparable results.  相似文献   

10.
SYPRO Ruby IEF Protein Gel Stain is an ultrasensitive, luminescent stain optimized for the analysis of protein in isoelectric focusing gels. Proteins are stained in a ruthenium-containing metal complex overnight and then rinsed in distilled water for 2 h. Stained proteins can be excited by ultraviolet light of about 302 nm (UV-B transilluminator) or with visible light of about 470 nm. Fluorescence emission of the dye is maximal at approximately 610 nm. The sensitivity of the SYPRO Ruby IEF protein gel stain is superior to colloidal Coomassie blue stain and the highest sensitivity silver staining procedures available. The SYPRO Ruby IEF protein gel stain is suitable for staining proteins in nondenaturing or denaturing carrier ampholyte isoelectric focusing and immobilized pH gradient gel electrophoresis. The stain is compatible with N,N'-methylenebisacrylamide or piperazine diacylamide cross-linked polyacrylamide gels as well as with agarose gels and high tensile strength Duracryl gels. The stain does not contain extraneous chemicals (formaldehyde, glutaraldehyde, Tween-20) that frequently interfere with peptide identification in mass spectrometry. Successful identification of stained proteins by peptide mass profiling is demonstrated.  相似文献   

11.
This study elucidates the optimum conditions at the minimum cost for using SYPRO Ruby protein gel stain. It deals with the effects of gel fixation and staining times, as well as dilution and reuse of SYPRO Ruby protein gel stain in one-dimensional (1-D) gels. Signal strength and dynamic range were highest in gels that were fixed thoroughly before staining, followed by overnight staining. Using the optimized protocol, dilution or reuse of the stain reduces the dynamic range and signal intensity. Sensitivity remains high if the stain is reused up to two times, but signal intensity is reduced up to 2.5-fold in twice used stain. Sensitivity also remains high if the stain is diluted 1:2 in water, but signal intensity is reduced up to 6-fold. Of the two options, reuse or dilution, reuse better retains signal intensity and dynamic range.  相似文献   

12.
A new fluorescent molecular probe, 2,2′‐(1E,1′E)‐2,2′‐(4‐(dicyanomethylene)‐4H‐pyrane‐2,6‐diyl)bis(ethene‐2,1‐diyl)bis(sodium benzenesulfonate) salt ( 1 ), possessing the cyanopyranyl moieties and two benzene sulfonic acid groups was designed and synthesized to detect proteins in solution and for high‐throughput SDS‐PAGE. Compound 1 exhibited no fluorescence in the absence of proteins; however, it exhibited strong fluorescence on the addition of bovine serum albumin as a result of intramolecular charge transfer. Compared with the conventional protocols for in‐gel protein staining, such as SYPRO Ruby and silver staining, 1 achieves higher sensitivity, even though it offers a simplified, higher throughput protocol. In fact, the total time required for protein staining was 60–90 min under optimum conditions much shorter than that required by the less‐sensitive silver staining or SYPRO Ruby staining protocols. Moreover, 1 was successfully applied to protein identification by mass spectrometry via in‐gel tryptic digestion, Western blotting, and native PAGE together with protein staining by 1 , which is a modified protocol of blue native PAGE (BN‐PAGE). Thus, 1 may facilitate high‐sensitivity protein detection, and it may be widely applicable as a convenient tool in various scientific and medical fields.  相似文献   

13.
High-performance staining for 1-D and 2-D SDS-PAGE was carried out using a novel protein-binding fluorophore (Dye 1), which noncovalently interacts with proteins and provides a fluorescence emission response to proteins by intramolecular charge transfer. In order to achieve the high-throughput analysis of proteins for SDS-PAGE, the general protocols for in-gel protein staining (SDS-PAGE, fixation, staining, washing, and detection) were simplified to produce an easy and rapid protocol (SDS-PAGE together with staining, washing, and detection). This method was performed by preparation of an electrophoresis buffer containing Dye 1 under optimum conditions, and by the binding of Dye 1 to proteins in the gel during the SDS-PAGE. As a result, this study required only 15 min for protein staining as a minimum time. On the other hand, it takes several hours for the general protein staining method, such as SYPRO Ruby staining (18 h) and CBB staining (105 min). Moreover, the protein-to-protein variation was low, and the detection limit was 7.0 ng/band of BSA (S/N = 3.0) in this method, which was as sensitive as the short-protocol silver staining methods. On the basis of these results, this rapid and easy protocol for SDS-PAGE using Dye 1 may be widely applicable and convenient for users in the various scientific and medical fields.  相似文献   

14.
Tear proteins of nonstimulated tears of 29 patients (healthy subjects, n = 8; dry-eye syndrome patients, n = 12; diabetic dry-eye patients, n = 9) were electrophoretically separated and stained by SYPRO Orange, followed by Coomassie blue staining. Both, the fluorescent and the Coomassie stains were subsequently analyzed by an automated two-dimensional algorithm for finding and quantification of peaks and by a discriminant analysis. Using SYPRO Orange, an average number of peaks/sample between three (at 200 ms) and 15 (at 3000 ms) could be found. In comparison, Coomassie staining resulted only in an average number of six peaks/sample. This corresponds to a sensitivity obtained at approx. 400-600 ms exposure time of SYPRO Orange stained gels. For all exposure times, the protein patterns of the three clinical groups were statistically significantly different from each other (P < 0.05). Only at 200 ms the distances between the groups decreased slightly. The Coomassie-stained gels revealed only a mid range discrimination power similar to that of 200-400 ms exposure in the fluorescing gels. The use of SYPRO Orange provides faster results than those obtained by Coomassie staining. In addition, the sensitivity of staining can be varied even in the same gel by changing the exposure time. The use of the two-dimensional algorithm allows to distinguish between the three clinical groups in accordance to earlier studies using one-dimensional densitographic raw data. Thus, the high speed of evaluation and the more sensitive results as compared to earlier studies could be a step further in the use of tear protein patterns in the diagnosis of DRY.  相似文献   

15.
Silver staining has been the method most commonly employed for high sensitivity staining of proteins following two-dimensional gel electrophoresis. Whilst this method offers detection in the nanogram range it does have major drawbacks including a lack of linearity, nonstoichiometric staining of proteins, a lack of compatibility with the microchemical preparation of proteins for identification by mass spectrometric techniques, and a highly subjective assessment of the staining endpoint. SYPRO Ruby is a relatively new, ruthenium complex-based stain which is reported to offer advantages over silver, particularly in overcoming the limitations cited above. We describe a series of experiments where several protein staining procedures commonly employed are compared. To enable optimization of the in situ digestion procedure, a statistical approach has been undertaken. The effects of a variety of staining, digestion, and analysis protocols on the downstream processing of a test radiolabeled protein were studied. The data confirms that as well as offering sensitivity similar to silver, SYPRO Ruby staining is reproducible, linear, and offers a higher level of compatibility with the identification of proteins by mass spectrometry.  相似文献   

16.
A 2-D native-PAGE/SDS-PAGE method for detecting the subunit components of protein oligomers at low picomole sensitivity is presented. IgG was electrophoresed in a native acidic polyacrylamide gel in amounts ranging from 51 pmol to 60 fmol. Silver-staining (native fast silver stain, ammoniacal silver stain, permanganate silver stain), Coomassie-staining (R-250, G-250), metal ion-reverse-staining (zinc, copper), and fluorescent chromophore-staining (SYPRO Ruby) methods were used to visualize the IgG oligomers. The protein zones were then excised, separated by SDS-PAGE, and subunits visualized with a permanganate silver stain. The Coomassie R-250/permanganate silver-staining combination detected IgG subunits using 2 pmol of sample. Coomassie G-250 and native fast silver staining in the first-dimensional gel produced detectable subunits in the second-dimensional separation at 3 and 13 pmol, respectively. Staining with silver (ammoniacal, permanganate), copper, zinc, or SYPRO Ruby in the first-dimensional gel did not produce discernible subunits in the second-dimensional gels due to protein streaking or protein immobilization in the native gel. When using a 2-D native-PAGE/SDS-PAGE system, Coomassie staining of the first-dimensional native gel combined with permanganate silver staining of the second-dimensional denaturing gel provides the most sensitive method (2-3 pmol) for visualizing constituent subunits from their oligomeric assemblies.  相似文献   

17.
Cong WT  Jin LT  Hwang SY  Choi JK 《Electrophoresis》2008,29(2):417-423
A fast and sensitive protein fluorescent detection method in SDS-PAGE using the natural product palmatine is described. Palmatine is an alkaloid found in various plants exhibiting a broad spectrum of antibiotic activity in humans. The sensitivity of palmatine staining is similar to those of the SYPRO Red, SYPRO Tangerine, and SYPRO Orange protein gel stains - about 4 ng per protein band. This detection sensitivity is comparable to colloidal CBB staining. Since proteins stained with palmatine do not need destaining, the staining procedure can be easily shortened and completed in about 30 min. Stained proteins can be photographed using a UV transilluminator. The results of the present study suggest that the palmatine staining is sensitive, rapid, low cost, and safe for a broad application to the research of protein.  相似文献   

18.
Proteomic projects are often focused on the discovery of differentially expressed proteins between control and experimental samples. Most laboratories choose the approach of running two-dimensional (2-D) gels, analyzing them and identifying the differentially expressed proteins by in-gel digestion and mass spectrometry. To date, the available stains for visualizing proteins on 2-D gels have been less than ideal for these projects because of poor detection sensitivity (Coomassie blue stain) or poor peptide recovery from in-gel digests and mass spectrometry (silver stain), unless extra destaining and washing steps are included in the protocol. In addition, the limited dynamic range of these stains has made it difficult to rigorously and reliably determine subtle differences in protein quantities. SYPRO Ruby Protein Gel Stain is a novel, ruthenium-based fluorescent dye for the detection of proteins in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) gels that has properties making it well suited to high-throughput proteomics projects. The advantages of SYPRO Ruby Protein Gel Stain relative to silver stain demonstrated in this study include a broad linear dynamic range and enhanced recovery of peptides from in-gel digests for matrix assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry.  相似文献   

19.
Finehout EJ  Lee KH 《Electrophoresis》2003,24(19-20):3508-3516
A comparison of automated in-gel digestion methods for low picomolar to femtomolar levels of protein is presented. Gel spots with 4 pmol to 120 fmol of protein were stained with either Coomassie colloidal blue or SYPRO Ruby and digested using an automated platform. The sequence coverages and average peak intensities obtained from a matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS) analysis are compared. Results show that methods using an acetonitrile extraction or digest times greater than the standard 4 h give no significant increase in peptide sequence coverage for automated digestion of low protein level samples. It is also shown that digests from SYPRO Ruby-stained gels show a greater improvement upon ZipTip cleanup than digests from Coomassie colloidal blue-stained gels. The digests from SYPRO Ruby-stained gels are also shown to give a higher average peptide intensity if a method with minimal gel plug washing is used.  相似文献   

20.
Okada H  Kaji N  Tokeshi M  Baba Y 《Electrophoresis》2008,29(12):2533-2538
We demonstrated a highly sensitive double-fluorescent dye staining in microchip electrophoresis (ME) for analysis of milk proteins. The detection sensitivity of ME was very limited so far and needed improvement. Our staining method consisted of two steps. First, in sample preparation before electrophoresis, protein was covalently bound to an amine-reactive fluorescent dye, Cy5. Then, the Cy5-attached protein was denatured with SDS and was further stained, during electrophoresis, with Agilent fluorescent dye, which was noncovalently attached to hydrophobic regions of the SDS-protein complexes. This double-fluorescent staining enhanced fluorescent intensity and lowered the detection limit to 200 pg of protein. This provided higher sensitivity than silver- or SYPRO Ruby-staining methods, which have previously given the highest sensitivity in protein staining. In addition, we applied our staining method to analysis of milk proteins and achieved their successful detection, whereas it was difficult to analyze them by the unimproved method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号