共查询到12条相似文献,搜索用时 15 毫秒
1.
Reaction of the bis-bidentate ligand, 1,3-bis((3-(pyridin-2-yl)-1H-pyrazol-1-yl)methyl)benzene (NN∩NN), containing two chelating pyrazolyl-pyridine units connected by an aromatic spacer with platinum group metal complexes results in a series of cationic binuclear complexes, [(η6-arene)2Ru2(NN∩NN)Cl2]2+ (arene = C6H6, 1; p-iPrC6H4Me, 2; C6Me6, 3), [(η5-C5Me5)2M2(NN∩NN)Cl2]2+ (M = Rh, 4; Ir, 5), [(η5-C5H5)2M2(NN∩NN)(PPh3)2]2+ (M = Ru, 6; Os, 7), [(η5-C5Me5)2Ru2(NN∩NN)(PPh3)2]2+ (8) and [(η5-C9H7)2Ru2(NN∩NN)(PPh3)2]2+ (9). All these complexes have been isolated as their hexafluorophosphate salts and fully characterized by use of a combination of NMR spectroscopy, IR spectroscopy and mass spectrometry. The solid state structures of three complexes, [2][PF6]2, [4][PF6]2 and [6][PF6]2, has been determined by X-ray crystallographic studies. 相似文献
2.
A quite general approach for the preparation of η5-and η6-cyclichydrocarbon platinum group metal complexes is reported. The dinuclear arene ruthenium complexes [(η6-arene)Ru(μ-Cl)Cl]2 (arene = C6H6, C10H14 and C6Me6) and η5-pentamethylcyclopentadienyl rhodium and iridium complexes [(η6-C5Me5)M(μ-Cl)Cl]2 (M = Rh, Ir) react with 2 equiv. of 4-amino-3,5-di-pyridyltriazole (dpt-NH2) in presence of NH4PF6 to afford the corresponding mononuclear complexes of the type [(η6-arene)Ru(dpt-NH2)Cl]PF6 {arene = C10H14 (1), C6H6 (2) and C6Me6 (3)} and [(η6-C5Me5)M(dpt-NH2)Cl]PF6 {M = Rh (4), Ir (5)}. However, the mononuclear η5-cyclopentadienyl analogues such as [(η5-C5H5)Ru(PPh3)2Cl], [(η5-C5H5)Os(PPh3)2Br], [(η5-C5Me5)Ru(PPh3)2Cl] and [(η5-C9H7)Ru(PPh3)2Cl] complexes react in presence of 1 equiv. of dpt-NH2 and 1 equiv. of NH4PF6 in methanol yielded mononuclear complexes [(η5-C5H5)Ru(PPh3)(dpt-NH2)]PF6 (6), [(η5-C5H5)Os(PPh3)(dpt-NH2)]PF6 (7), [(η5-C5Me5)Ru(PPh3)(dpt-NH2)]PF6 (8) and [(η5-C9H7)Ru(PPh3)(dpt-NH2)]PF6 (9), respectively. These compounds have been totally characterized by IR, NMR and mass spectrometry. The molecular structures of 4 and 6 have been established by single crystal X-ray diffraction and some of the representative complexes have also been studied by UV–Vis spectroscopy. 相似文献
3.
A series of mononuclear and binuclear cyclometalated platinum(II) complexes containing new terdentate meta-bis(2-pyridoxy)benzene ligands: 3,5-bis(2-pyridoxy)toluene (L1H) and 3,5-bis(2-pyridoxy)-2-dodecylbenzene (L2H): [Pt(L1)Cl] (1), [Pt(L2)Cl] (2), [Pt(L1)(CH3CN)](ClO4) (3), {[Pt(L1)]2(μ-dppm)}(ClO4)2 (4), {[Pt(L2)]2(μ-dppm)}(ClO4)2 (5), {[Pt(L1)]2(μ-pyrazole)}(ClO4) (6), {[Pt(L2)]2(μ-pyrazole)}(ClO4) (7), {[Pt(L1)]2(μ-imidazole)}(ClO4) (8) and {[Pt(L2)]2(μ-imidazole)}(ClO4) (9), have been synthesized and characterized. These ligands are coordinated to platinum(II) in a “pincer”-like manner and the presence of pyridyl donors enhances the availability of the ligand π∗ orbitals for electronic transition. Spectroscopic properties of these cyclometalated complexes were studied. While the non-coplanar nature of the ligands hinders ligand-ligand and metal-metal interactions in these cyclometalated complexes, the presence of long hydrocarbon side chain on ligand L2H seems to alleviate such hindrance. Intermolecular π-π, and possibly Pt-Pt interactions were observed in complex 2 at high concentration. 相似文献
4.
Sara Luisa Rodríguez De Luna Luis Ángel GarzaSylvain Bernès Perla ElizondoBlanca Nájera Nancy Pérez 《Polyhedron》2010
A series of mononuclear complexes based on lanthanide ions has been synthesized and X-ray characterized. The compounds [LnIIIL2(NO3)3(H2O)2] (Ln = La, Ce, Pr, Nd, Sm, Gd and Tm; L = 2,6-bis(2-formylphenoxymethyl)pyridine) are found to be isomorphous and isostructural. Ligand L systematically coordinates through one carbonyl functionality, and the resulting complexes are placed on a twofold axis in crystals belonging to C2/c space-group. Emission spectra for Ln = La, Pr, Nd revealed a correlation between the Ln–O coordination bond length and the photoluminescent properties of the complexes, in line with a Förster–Dexter mechanism for intramolecular energy transfer. Ligand L is therefore a suitable sensitizer for lanthanide ions. 相似文献
5.
Hui-Bo Zhou Dai-Zheng Liao Li-Xin Deng Jing-Zhong Yu Yang-Ping Gao Xiao-Fang Yang Zong-Hui Jiang Shi-Ping Yan Peng Cheng 《Structural chemistry》2006,17(1):43-47
Two new complexes, [Cu(L1){N(CN)2}]·ClO4 (1) (L1 is 1,8-dimethyl-1,3,6,8,10,13-hexa-azacyclotetradecane) and [Co(L2)(N3)2]·ClO4 (2) (L2 is 5,7,7,12,14,14-hexamethyl-1,4,8,11-tetra-azacyclotetradecane) have been synthesized and characterized. The compounds crystallize in the monoclinic system P21 space group for 1 and P21/n for 2. Single crystal X-ray analysis reveals that the compound 1 assumes a one-dimensional structure via hydrogen-bonding interactions, in which each Cu(II) ion is coordinated by four nitrogen atoms from ligand L1 and one nitrogen atom from [N(CN)2]− anion. For compound 2, each Co(III) ion is coordinated by four nitrogen atoms of ligand L2 and two nitrogen atoms from N3
− anion. 相似文献
6.
Two diorganotin(IV) complexes of the general formula R2Sn[Ph(O)CCH-C(Me)N-NC(O)Ph] (R=Ph, 1; R=Me, 2) have been synthesised from the corresponding diorganotin(IV) dichloride and the ligand 4-phenyl-2,4-butanedionebenzoylhydrazone(2−) (H2L), derived from benzoyl acetone and benzoyl hydrazide in methanol at room temperature in presence of triethylamine. The syntheses were performed under very mild conditions, at room temperature and without exclusion of air or moisture from the reaction vessel. Previously, rigorous conditions have been considered necessary for these species. The two compounds have been characterised by elemental analysis, IR and 1H, 13C, 15N, 119Sn NMR spectra, and their structures have been confirmed single crystal X-ray structure analysis. The central tin atom of both complexes adopts a distorted trigonal bipyramidal coordination with two ligand oxygen atoms in axial positions, the nitrogen atom of the ligand and two organic groups on tin occupying equatorial sites. 2 has crystallised with two crystallographically independent molecules in the asymmetric unit. The δ(119Sn) values for the complexes 1 and 2 are −151.5 and −146.8 ppm, respectively, thus indicating penta-coordinated tin centres. 相似文献
7.
The free ligand, 5-(2-pyridyl)-1,3,4-oxadiazole-2-thione (1, HL5), has been synthesized and characterized; its three new functional d10 transition-metal complexes, [Zn(L5)2(H2O)2] (2), [Cd(L5)2]n (3) and [Hg2(L5)4] (4), have been successfully obtained by a diffusion synthetic method and characterized by single-crystal X-ray diffraction, infrared spectroscopy, elemental analysis, thermogravimetric analysis, and photoluminescence. On the basis of the X-ray analyses, the radii of the metal ions are found to play an important role in determining the structures. The radii and nature of the metal ions can impart their influence on the coordination geometry of the d10 transition-metal atoms, which seems to be the main factor controlling the structures and luminescent properties of the reaction products in this system. 相似文献
8.
A new vic-dioxime ligand, N,N′-bis(aminopyreneglyoxime) (LH2), and its copper(II), nickel(II) and cobalt(II) metal complexes were synthesized and characterized by elemental analyses,
IR, UVVIS and 1H and 13C NMR spectra (for the ligand). Mononuclear complexes were synthesized by a reaction of ligand (LH2) and salts of Co(II), Ni(II), and Cu(II) in ethanol. The complexes have the metal-ligand ratio of 1: 2 and metals are coordinated
by N,N′ atoms of vicinal dioximes. The ligand acts in a polydentate fashion bending through nitrogen atoms in the presence of a base,
as do most vic-dioximes. Detection of a H-bonding in the Co(II), Ni(II), and Cu(II) complexes by IR revealed the square-planar MN4 coordination of mononuclear complexes. Fluorescent properties of the ligand and its complexes arise from pyrene units conjugated
with a vic-dioxime moiety. Fluorescence emission spectra of the ligand showed a drastic decrease in its fluorescence intensity upon
metal binding. The electrochemical properties of the complexes were studied by the cyclic voltammetry technique. The nickel
complex displayed an irreversible oxidation process while the copper complex exhibited a quasi-reversible oxidation and reduction
processes based on the copper Cu(II)/Cu(III) and Cu(II)/Cu(I) couples, respectively. 相似文献
9.
Javier A. Cabeza Ignacio del Río Daniel Miguel 《Journal of organometallic chemistry》2007,692(20):4407-4410
The tetraruthenium cluster complex [Ru4(μ4-κ4-dmpu)(CO)10], H2dmpu = N,N′-bis(6-methylpyrid-2-yl)urea, has been prepared by treating [Ru3(CO)12] with H2dmpu in toluene at reflux temperature. An X-ray diffraction study has determined that this cluster has a butterfly metallic skeleton hold up by a doubly-deprotonated N,N′-bis(6-methylpyrid-2-yl)urea ligand (dmpu). This ligand has the pyridine N atoms attached to the wing-tip Ru atoms and the amido N atoms spanning Ru-Ru wing-edges, in such a way that the cluster has C2 symmetry. The donor atoms of doubly-deprotonated N,N′-dipyrid-2-ylureas seem to be appropriately arranged to hold butterfly tetranuclear clusters. 相似文献
10.
Three Pd(II) complexes [Pd2(μ-Cl)2{7,8-(PPh2)2-7,8-C2B9H10}2] · 0.25CH2Cl2 (1), [Pd{7,8-(PPh2)2-7,8-C2B9H10}2] · 4CHCl3 (2) and [PdCl2(1,2-(PPh2)2-1,2-C2B10H10)] (3) have been synthesized by the reactions of 1,2-(PPh2)2-1,2-C2B10H10 with PdCl2 in acetonitrile, cyanophenyl and dichloromethane, respectively. A fourth complex, [PdI2(1,2-(PPh2)2-1,2-C2B10H10)] (4), was obtained by a ligand exchange reaction through the substitution of the Cl− of complex 3 with I−. All four complexes have been characterized by elemental analysis, FT-IR, 1H and 13C NMR spectroscopy and X-ray structure determination. Single crystal X-ray determination showed that the carborane cage, nido for 1, 2 and closo for 3, 4, was coordinated bidentately to the Pd atom through the two P atoms, and the geometry at the Pd atom was square-planar in all the complexes. 相似文献
11.
The chemistry of binuclear palladium(II) and platinum(II) complexes has been reviewed. This review deals with complexes derived from various classes of ligands and covers various aspects, viz. synthesis, spectroscopic and structural features and chemical reactivity, of these complexes. Applications of these complexes are briefly described in the respected sections. 相似文献
12.
Tushar S. Basu Baul Archana Mizar George Eng Michal Hol?apek Monique Biesemans Ray Butcher 《Journal of organometallic chemistry》2006,691(12):2605-2613
A series of cis-bis{5-[(E)-2-(aryl)-1-diazenyl]quinolinolato}dibenzyltin(IV) complexes have been synthesized by reacting sodium salts of 5-[(E)-2-(aryl)-1-diazenyl]quinolin-8-ol (LH) and dibenzyltin dichloride. These complexes have been characterized by 1H, 13C, 119Sn NMR, ESI-MS in solution and by IR and 119mSn Mössbauer, 117Sn CP-MAS NMR spectroscopy in solid state. In addition, the structures of three of the dibenzyltin(IV) complexes, viz., Bz2Sn(L2)2 (2), Bz2Sn(L3)2 (3), and Bz2Sn(L5)2 (5) (L = 5-[(E)-2-(aryl)-1-diazenyl]quinolin-8-ol: aryl = 4′-methylphenyl- (L2H), 4′-methoxylphenyl- (L3H) and 4′-bromophenyl- (L5H)) were determined by single-crystal X-ray diffraction. In general, the complexes were found to adopt a distorted cis-octahedral arrangement around the tin atom in both solution and solid state. 相似文献