首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
EXAFS and SAXS were used for structure elucidation of zirconium butoxide complexes in n-butanol at concentrations from 0.3 g to 0.015 g ZrO2 in 1 ml. The basic structural unit of the complex is a tetramer. It has two equal sides with zirconium atoms linked by double oxygen bridges and with zirconium-zirconium distances of 3.5 Å. The other sides in the tetramer are 3.3 Å and 3.9 Å. This difference in bond lengths is explained by the different numbers of double or single ligand bridges between zirconium atoms. The tetramers are apt to undergo oligomerization to form particles with a diameter of 80 Å in solution.  相似文献   

2.
An ionic dinuclear triple-hydrogen-bridged 9-BBN hydroborate zirconium complex, [K(Et2O)4][{(μ-H)2BC8H14}3Zr(μ-H)3Zr{(μ-H)2BC8H14}3] (1) was formed from the reaction of Zr{(μ-H)2BC8H14}4 with KH and aniline in diethyl ether. The molecular structure of compound 1 was determined by single-crystal X-ray diffraction analysis. Six 9-BBN hydroborate ligands are coordinated to two Zr atoms via two bridging H atoms, and two Zr atoms are connected by three bridging hydrogens in the anion part of this molecule. The distance of Zr?Zr is 3.1025(5) Å. The crystal structure of 1 suggests that agostic interactions between the zirconium metal center and α-C-H of the 9-BBN hydroborate ligand exist in the solid state. The Zr?H distances corresponding to the α-C-H?Zr agostic interactions are 2.579(4) Å and 2.743(4) Å.  相似文献   

3.
Homogeneous mesoporous zirconium-containing MCM-41 type silica were prepared by supramolecular templating and their textural and structural properties were studied using powder X-ray diffraction, N2 porosimetry, atomic force microscopy, EXAFS, XPS, and UV-VIS-NIR diffuse reflectance spectroscopy. Their acid properties were also studied by using IR spectroscopy and by the use of catalytic tests such as the decomposition of isopropanol and the isomerization of 1-butene. The materials prepared show a good degree of crystallinity with a regular ordering of the pores into a hexagonal arrangement and high thermal stability. The specific surface area of the prepared materials decreases as the zirconium content rises. Zirconium atoms are in coordination 7 to 8 and located at the surface of the pores such that a high proportion of the oxygen atoms bonded to zirconium corresponds to surface non-condensed oxygen atoms. Both facts are responsible for the acid properties of the solids that show weak Brønsted and medium strong Lewis acidity.  相似文献   

4.
This work describes the preparation of [PNP]ZrX3 ([PNP] = [N(o-C6H4PiPr2)2]; X = Cl, Me, CH2SiMe3) whose structural preference is found to be a function of the electronic and steric nature of the monodentate ligand X. The reaction of ZrCl4(THF)2 with [PNP]Li in toluene at room temperature generates [PNP]ZrCl3 as a red solid in 60% yield. Alkylation of [PNP]ZrCl3 with three equivalents of Grignard reagents in diethyl ether at −35 °C produces cleanly [PNP]ZrR3 (R = Me, CH2SiMe3) as yellow crystalline materials. An X-ray diffraction study of [PNP]ZrCl3 showed it to be a chloride-bridged binuclear species {[PNP]ZrCl2(μ−Cl)}2 in which both zirconium atoms are 7-coordinate whereas that of [PNP]ZrMe3 revealed a mononuclear, 6-coordinate core structure. Interestingly, with the incorporation of more sterically demanding alkyls, [PNP]Zr(CH2SiMe3)3 is a 5-coordinate compound wherein the amido phosphine ligand is κ2-N,P bound to zirconium. The solution structures of these molecules were also assessed by variable-temperature NMR spectroscopy.  相似文献   

5.
Non-agglomerated hybrid particles of 200 nm diameter with an outer metal oxide shell were prepared by reacting the COOH groups of poly((S)-N-dicarbazolyl-lysine)-covered silica particles with metal alkoxides, such as titanium, zirconium and aluminum alkoxides, followed by sol–gel processing. With tetraethoxysilane (Si(OEt)4), the silica particle core was growing rather than forming an external metal oxide shell, as observed for the other tested metal alkoxides.  相似文献   

6.
The formation of alkyllithium-lithium methoxide mixed aggregates was modeled with the B3LYP density functional method. In the gas phase there was little tendency to form mixed dimers or trimers. Mixed tetramer formation was more energetically favorable, particularly for tert-butyllithium. THF solvation favored the formation of methyllithium and ethyllithium mixed tetramers, but not those of sec-butyllithium and tert-butyllithium. The potential for resolution of chiral alkyllithiums by mixed aggregate formation with enantiomerically pure lithium alkoxides was examined.  相似文献   

7.
Cai  Chen-Xin  Tian  Yun-Qi  Ren  Xiao-Ming  Li  Yi-Zhi  You  Xiao-Zeng 《Transition Metal Chemistry》2003,28(3):312-315
The solvothermal synthesis and crystal structure of the one-dimensional coordination polymer Ni(DMBDIZ) (OOCMe)2 (DMBDIZ = 2,6-dimethyl-benzo[1,2-d:4,5-d]diimidazole) are described. Each nickel ion is located in pseudo-octahedral geometry formed by four oxygen atoms from two bidentate acetate anions and two trans-related tertiary nitrogen donors from two different DMBDIZ ligands. The DMBDIZ entity acts as a trans exo-bidentate ligand and bridges the nickel ions to form a uniform linear chain with Ni···Ni separation = 8.703 Å. The hydrogen bonding between the acetate anions and the ligands contributes to the enhancement of the structural dimensionality. Variable-temperature magnetic susceptibility measurements (2.0–300 K) reveal the presence of a very weak ferromagnetic interaction between the magnetic centers.  相似文献   

8.
This paper summarizes recent literature data and presents new experimental data on the mechanisms of chemical modification, hydrolysis and polycondensation of the alkoxides and demonstrates possibilities to approach new classes of materials, exploiting these mechanisms. Low reactivity of silicon alkoxides is improved by either basic catalysis exploiting an SN2 mechanism or acidic catalysis facilitating a proton-assisted SN1 mechanism as well as by modification with chelating ligands. Metal alkoxides are much stronger Lewis bases compared to silicon alkoxides and the acidity of water is strong enough to achieve their rapid hydrolysis via proton-assisted SN1 pathway even in the absence of additional catalysts. Introduction of the modifying chelating ligands is leading generally to increased charge distribution in the precursor molecules. Modifying chelating ligands are also appreciably smaller than the alkoxide ligands they replace. The modification with chelating ligands is thus facilitating the kinetics of hydrolysis and polycondensation. The size and shape of the primary particles formed in sol-gel treatment of metal alkoxides are defined not by kinetic factors in their hydrolysis and polycondensation but by the interactions on the phase boundary, which is in its turn directed by the ligand properties. The products of the fast hydrolysis and condensation sequence consist of micelles templated by self-assembly of ligands (mainly oxo-species). This concept provides explanations for commonly observed material properties and allows for the development of new strategies for the preparation of materials. We discuss the formation of inverted micelles, obtained by the appropriate choice of solvents, which allows for the formation of hollow spheres. The modifying β-diketonate ligands act as the surfactant and form an interface between the hollow sphere and the solvent. Retention of ligands inside the gel particles is possible only if ligands possessing both chelating and bridging properties are applied. Application of such ligands, for example, diethanolamine, permits to prepare new transition metal oxide based microporous membranes.  相似文献   

9.
X-ray diffraction study of zirconia pillared clays   总被引:1,自引:0,他引:1  
X-ray powder diffraction (XRPD) and X-ray radial electronic distribution density (RED) of initial and zirconia-pillared interlayered clays (Zr-PILC) were studied. After pillaring, the basal (001) spacing was found to increase from 11 Å in the initial clay kept under air to 17.7 Å in Zr-PILC. The structure of zirconium nanopillars was characterized. The interatomic distances with corresponding coordination numbers obtained from the RED curves were close to those in zirconium tetramers.This revised version was published online in December 2005 with corrections to the Cover Date.  相似文献   

10.
Simple RZnOR’ alkoxides are among the first known organozinc compounds, and widespread interest in their multifaced chemistry has been driven by their fundamental significance and potential applications including various catalytic reactions. Nevertheless, their chemistry in solution and in the solid state remains both relatively poorly understood and a subject of constant debate. Herein, the synthesis and structural characterization of long-sought structural forms, a roof-like trimer [(tBuZn)3(μ-OC(H)Ph2)23-OC(H)Ph2)] and a ladder-type tetramer [(PhZn)4(μ-OC(H)Ph2)23-OC(H)Ph2)2], incorporating diphenylmethanolate as a model alkoxide ligand, are reported. Both novel aggregates are robust in the solid state and resistant towards mechanical force. By using 1H NMR and diffusion-order spectroscopy, it is demonstrated that new RZnOR’ alkoxides are kinetically labile in solution and readily undergo ligand scrambling, such as in the case of Schlenk equilibrium. The elucidated key structural issues, which have remained undiscovered for decades, significantly advance the chemistry of RZnOR’ alkoxides and should support the rational design of zinc alkoxide-based applications.  相似文献   

11.
12.
A full-atomic molecular dynamics simulation has been performed for a ligand shell of colloidal cadmium selenide quantum dots. Trioctylphosphine, trioctylphosphine oxide, octadecylphosphonic acid, and hexadecylamine have been used as ligands. For a mixture of the two former ligands, the effect of surface curvature on the fraction of surface ions of quantum dots bonded to ligands has been studied. It has been shown that, for particles with radii of 1.9 and 4.5 nm, every second and approximately third cadmium atom, respectively, is bonded to trioctylphosphine oxide. Partial introduction of octadecylphosphonic acid and hexadecylamine may increase the fraction of bonded surface atoms by more than two times.  相似文献   

13.
Dimethyl and bis[(trimethylsilyl)methyl] zirconium complexes ([OSSO]ZrR2) [4, R = Me; 5, R = CH2SiMe3] having [OSSO]-type bis(phenolato) ligand 1 based on the trans-1,2-cyclooctanediylbis(thio) core have been synthesized by the reactions of the corresponding dichloro zirconium complex 3 with 2 equiv. of MeMgBr and Me3SiCH2MgCl, respectively, in Et2O/toluene at −78 °C. The molecular structures of these complexes 3-5 were characterized by NMR spectroscopy, elemental analyses, and X-ray crystallography. 1H and 13C NMR data of complexes 3-5 exhibited that they took the C2-symmetry in solution in the NMR time scale. In the crystal structures of 3-5, each zirconium center lies at the center of a distorted octahedral coordination sphere with cis sulfur atoms and trans oxygen atoms, which adopts a cis-α [(Λ,S,S)] configuration.  相似文献   

14.
The structure of particles in zirconium n-butoxide solutions in n-butyl alcohol is determined by means of EXAFS, SAXS, and molecular mechanics modeling. Zirconium atoms are found to be bonded to each other via the oxygen atom and to form large anisotropic particles in the solution. Primary particles have a shape close to spherical; their diameter together with the solvate shell is 28.9 Å. These particles then aggregate into anisotropic structures. During solution aging under normal conditions without contact with the atmosphere, the particle anisotropy increases because of the aggregation of complexes. When the solution concentration decreases, the particles are divided into primary spherical particles with a characteristic size of 28.9 Å. The described changes are confirmed by a decrease in the number of Zr-Zr distances of 4.8 Å and 5.1 Å, which according to the EXAFS data, correspond to the bonds between the primary particles. The characteristic maximum sizes of particles in solutions with concentrations from 0.1 g to 0.003 g ZrO2/ml are 160–80 Å.  相似文献   

15.

Abstract  

The cages [{La2(NCS)5(NCMe)6}2O]·MeCN and [{Eu2(NCS)5(NCMe)5}2O]·MeCN have been prepared by redox transmetallation between the lanthanoid metals and mercuric thiocyanate in acetonitrile. The structure of the former has a core of four La atoms bonded to a central oxygen atom. Two La atoms are nine coordinate being bonded to oxygen, four terminal MeCN ligands and four N-bridged thiocyanato ligands, whereas the other two are eight coordinate being bonded to oxygen, the four bridging thiocyanato ligands, two terminal acetonitrile molecules, and a terminal N-bonded thiocyanate ion. In the Eu complex, there is a similar core of four Ln atoms bound to a central oxygen atom, but all Eu atoms are eight coordinate, and have four N-bridged thiocyanate ligands. Two have three MeCN ligands, whilst the other two have one terminal NCS and two acetonitrile ligands.  相似文献   

16.
The frontal analysis method was used to measure the adsorption isotherms of phenol, 4-chlorophenol, p-cresol, 4-methoxyphenol and caffeine on a series of columns packed with home-made alkyl-phenyl bonded silica particles. These ligands consist of a phenyl ring tethered to the silica support via a carbon chain of length ranging from 0 to 4 atoms. The adsorption isotherm models that fit best to the data account for solute–solute interactions that are likely caused by π–π interactions occurring between aromatic compounds and the phenyl group of the ligand. These interactions are the dominant factor responsible for the separation of low molecular weight aromatic compounds on these phenyl-type stationary phases. The saturation capacities depend on whether the spacer of the ligands have an even or an odd number of carbon atoms, with the even alkyl chain lengths having a greater saturation capacity than the odd alkyl chain lengths. The trends in the adsorption equilibrium constant are also significantly different for the even and the odd chain length ligands.  相似文献   

17.
18-crown-6 reacts with TiCl3 in CH2Cl2 to form a complex in which the crown ether functions as a tridentate ligand. Addition of moist hexane affords a molecular complex in which the crown ether functions as a bidentate ligand. A water molecule is bonded directly to the titanium atom and is further hydrogen bonded to three of the oxygen atoms of the crown. The deep blue crystals of the CH2Cl2 adduct belong to the monoclinic space groupP21/n witha=13.481(8),b=8.021(5),c=21.425(9) Å, =97.32(5)°, and calc = 1.51 g cm–3 forZ=4. Refinement led to a conventionalR value of 0.040 based on 873 observed reflections. The Ti–O bond distances for the crown oxygen atoms are 2.123(8) and 2.154(9) Å, while the oxygen atom of the water molecule is bonded at 2.072(8) Å. The octahedral coordination sphere of the titanium atom is completed by the three chlorine atoms at distances of 2.340(5), 2.352(4), and 2.373(4) Å. Supplementary Data relating to this article are deposited with the British Library as Supplementary Publication No. SUP 82034 (10 pages).  相似文献   

18.
[Zr2Cl4(NPMe3)4(HNPMe3)] · CH3CN, a Phosphorane Iminato Complex with Zr?N Double Bonds The title compound has been prepared from a molten mixture of ZrCl4 with Me3SiNPMe3 in the presence of potassium fluoride and subsequent extraction with acetonitrile. According to the crystal structure determination the zirconium atoms are linked by three μ2-N atoms of two NPMe3? groups and by the HNPMe3 molecule. Two terminal bounded chlorine atoms and a terminally coordinated NPMe3? ligand complete the distorted octahedral surrounding of the zirconium atoms thus forming an edge sharing double octahedron. The ZrN bond lengths of the terminal NPMe3? groups of 194.6 pm correspond with double bonds.  相似文献   

19.
Polynuclear species of zirconium in acidic aqueous solution are investigated by combining X-ray absorption spectroscopy (XAFS) and nanoelectrospray mass spectrometry (ESI-MS). Species distributions are measured between pHC 0 and pHC 3 for [Zr] = 1.5–10 mM. While the monomer remains a minor species, with increasing pH the degree of polymerization increases and the formation of tetramers, pentamers, octamers, and larger polymers is observed. The high resolution of the mass spectrometer permits the unambiguous determination of polynuclear zirconium hydroxide complexes by means of their isotopic patterns. The relative abundances of mononuclear and polynuclear species present simultaneously in solution are measured, even if one of the species contributes only 0.1% of the Zr concentration. For the first time it has been directly observed that the hydrolysis of polynuclear Zr species is a continuous process which leads to charge compensation through the sequential substitution of water molecules by hydroxide ligands until doubly charged polymers dominate at conditions (H+ and Zr concentrations) close to the solubility of Zr(OH)4(am). The invasiveness of the electrospray process was minimized by using very mild declustering conditions, leaving the polynuclear species within a solvent shell of approximately 20 water molecules. Figure Schematic Diagram of Multiplexed Measurement of 9 Anti-Nuclear Antibodies Using the AtheNa Multilyte Assay  相似文献   

20.
This paper reports the preparation and characterization of a series of organic derivatives of ZrPO(4)Cl(CH(3))(2)SO obtained by topotactic anion exchange of chloride ligands with several n-alkoxide (RO) and carboxylate groups (RCOO). Exchange with alkoxides, with an alkyl chain length from 2 to 8 carbon atoms, gave products of general formula ZrPO(4)RO(CH(3))(2)SO. In these derivatives alkoxide groups, covalently bonded to zirconium atoms via Zr-O bonds, point toward the interlayer region. Carboxylate derivatives, of general formula ZrPO(4)[(RCOO)(CH(3))(2)SO](1)(-)(x)(OH H(2)O)(x), were obtained using benzoate (x = 0), nitrobenzoate (x = 0.3), and phenylacetate (x = 0.2) groups. The thermal behavior of these organic derivatives is discussed. Due to this reactivity, ZrPO(4)Cl(CH(3))(2)SO is an attractive precursor for materials chemistry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号