首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Tris(trimethylsilyl)methaneselenenyl Halides and Chalcogenides . Ditrisyldiselenide ( 1 ) (trisyl = TSi = (Me3Si)3C) reacts with SOCl2, Br2 and I2 to provide trisylselenenyl halides TSiSeX ( 2 : X = Cl; 3 : X = Br, 4 : X = I). Insertion of S and Se into the Se? Se bond of 1 to yield (TSiSe)2Sn ( 5 : n = 1; 6 : n = 2) and (TSiSe)2Sen ( 7 : n = 1; 8 : n = 2) was catalysed by iodine. 5 was isolated in pure state and examined by X-ray diffraction. Triselenide 7 can be cleaved by I2 in CS2 to give 4 and Se2I2 ( 9 ). From 2 with Me3SiCN and Me3SiNCS, the new selenenyl pseudohalides TSiSeCN ( 10 ) and TSiSeSCN ( 11 ) were prepared. The compounds were characterised by 1H, 13C- and 77Se n.m.r. spectra.  相似文献   

2.
Tris(trimethylsilyl)silylamine and the lithiated and silylated Derivatives — X-Ray Structure of the dimeric Lithium Trimethylsilyl-[tris(trimethylsilyl)silyl]amide The ammonolysis of the chlor, brom or trifluormethanesulfonyl tris(trimethylsilyl)silane yields the colorless tris(trimethylsilyl)silylamine, destillable at 51°C and 0.02 Torr. The subsequent lithiation, reaction with chlor trimethylsilane and repeated lithiation lead to the formation of lithium tris(trimethylsilyl)silylamide, trimethylsilyl-[tris(trimethylsilyl)silyl]amine and finally lithium trimethylsilyl-[tris(trimethylsilyl)silyl]amide, which crystallizes in the monoclinic space group P21/n with a = 1 386.7(2); b = 2 040.2(3); c = 1 609.6(2) pm; β = 96.95(1)° and Z = 4 dimeric molecules. The cyclic Li2N2 moiety with Li? N bond distances displays a short transannular Li …? Li contact of 229 pm. The dimeric molecule shows nearly C2-symmetry, so that one lithium atom forms agostic bonds to both the trimethylsilyl groups, the other one to the tris(trimethylsilyl)silyl substituents. However, the 7Li{1H}-NMR spectrum displays a high field shifted singlet at —1.71 ppm. The lithiation of trimethylsilyl-[tris(trimethylsilyl)silyl]amine leads to a high field shift of the 29Si{1H} resonance of about 12 ppm for the Me3SiN group, whereas the parameters of the tris(trimethylsilyl)silyl ligand remain nearly unaffected.  相似文献   

3.
About the Synthesis of Tris(trimethylsilyl)silyl Potassium, Rubidium and Cesium and the Molecular Structures of two Toluene Solvates . Solventfree tris(trimethylsilyl)silyl potassium ( 1 ), rubidium ( 2 ) and cesium ( 3 ) are obtained by the reaction of the zink group bis[tris(trimethylsilyl)silyl] derivatives with the appropriate alkali metal in n-pentane. Addition of benzene or toluene to the colourless powders yields deeply coloured solutions. From these solutions single crystals of tris(trimethylsilyl)silyl rubidium—toluene (2/1) ( 2 a ) and tris(trimethylsilyl)silyl cesium—toluene (2/3) ( 3 a ) suitable for X-ray structure analysis are iso- lated [ 2a : orthorhombic; P212121; a = 1 382.1(3); b = 1 491.7(5); c = 2 106.3(6) pm; Z = 4 (dimers); 3a : orthorhombic; P212121; a = 2 131.0(6); b = 2 833.1(2); c = 925.2(2) pm; Z = 4 (dimers)]. The central structure moieties are folded four-membered Rb2Si2 and Cs2Si2 rings, respectively. Small Si? Si? Si angles (100 to 104°) on the one hand and extreme highfield 29Si-NMR shifts of the central silicon atoms on the other hand indicate a strong charge transfer from the alkali metal atoms to the tris(trimethylsilyl)silyl fragments, i.e. mainly ionic interactions between alkalimetal and silicon atoms.  相似文献   

4.
Base-free Tris(trimethylsilyl)methyl Derivatives of Lithium, Aluminium, Gallium, and Indium Base-free LiR* (R*=-C(SiMe3)3) has been prepared from R*Cl and Li-metal in toluene at 85?90°C and used to synthesize the metallanes R*MMe2 with M = Al, Ga and In, respectively. The NMR (1H, 13C, 29Si) and the vibrational spectra of these trisyl compounds have been discussed. AlCl3 and LiR*(ratio 1 : 1) forms the metallate metallate Li[R*AlCl3]. The triclinic unit cell (space group P1 ) consists of a centrosymmetric assoziate, formed by four Li[R*AlCl3]- units with Al? Cl…?Li bridges, two pairs of Li-atoms differing in their chlorine-coordination and two disordered toluene molecules, inserted in the crystal lattice (R1wR2 =0,0444/0,1072). The reaction of GaCl3 with LiR* (I :1) gives the unusual sesquichloride (R*Ga(Cl1,33)Me0,67)3 in moderate yield. The X-ray structure determination shows a Ga3Cl3-skeleton with chairconformation and disordered, terminal gallium ligands (R1/wR2= 0,0646/0,2270).  相似文献   

5.
The highly reactive compound bis(trimethylsilyl)diimine (BSD), which was first prepared by oxidation of lithium tris(trimethylsilyl)hydrazide, is light blue, sensitive to thermolysis and hydrolysis, and ignites spontaneously in air. On the basis of electron transfer, acid-base, or free-radical reactions, it acts in particular as a (preparatively useful) redox system and as an agent for the introduction of azo groups. Redox reactions lead by oxidation or reduction of the other reactant through two oxidation stages to hydrazine derivatives or molecular nitrogen, and in the case of electrochemical reduction, to BSD radical-anions. Azo-group transfers, on the other hand, yield new inorganic azo compounds with no change in the oxidation state of the diimine group.  相似文献   

6.
The title compound has been prepared in good yield by the reaction of gallium trichloride with base‐free hypersilyl lithium (Li–Si(SiMe3)3, Me = CH3) in a 1 : 3 molar ratio. Ga(Si(SiMe3)3)3 is monomeric in solution and in the solid state. The compound has been characterized with NMR, IR and Raman techniques as well as by an X‐ray structure determination (planar GaSi3‐skeleton, monoclinic space group P21/c, Z = 4, d(Ga–Si) = 249,8 ± 0,2 pm).  相似文献   

7.
The oxidative treatment of vinyl tris(trimethylsilyl)silanes with hydrogen peroxide in aqueous sodium hydroxide in tetrahydrofuran generates reactive silanol or siloxane species that undergo Pd-catalyzed cross-couplings with aryl, heterocyclic, and alkenyl halides in the presence of Pd(PPh3)4 and tetrabutylammonium fluoride. Hydrogen peroxide and base are necessary for the coupling to occur while activation of the silanes with fluoride is not required. The conjugated and unconjugated tris(trimethylsilyl)silanes serve as good cross-coupling substrates. The (E)-silanes undergo coupling with retention of stereochemistry while coupling of (Z)-silanes occurred with lower stereoselectivity to produce an E/Z mixture of products.  相似文献   

8.
The Variable Reaction Behaviour of Base‐free Tris(trimethylsilyl)methyl Lithium with Trihalogenides of Earth‐Metals and Iron Base‐free tris(trimethylsilyl)methyl Lithium, Tsi–Li, reacts with the earth‐metal trihalogenides (MHal3 with M = Al, Ga, In and Hal = Cl, Br, I) primarily to give the metallates [Tsi–MHal3]Li. Simultaneous to this simple metathesis a methylation also takes place, mainly with heavier halogenides of Ga and In with excess Tsi–Li, forming the mono and dimethyl compounds Tsi–M(Me)Hal (M = Ga, In; Hal = I), Tsi–MMe2 (M = Ga), and the bis(trisyl)derivative (Tsi)2InMe, respectively and the main by‐product 1,3‐disilacyclobutane. Representatives of each type of compound have been isolated by fractionating crystallizations or sublimations and characterized by spectroscopic methods (1H, 13C, 29Si NMR, IR, Raman) and X‐ray elucidations. Reduction takes place, when FeCl3 reacts with Tsi–Li (1 : 3 ratio) in toluene at 55–60 °C, yielding red‐violet Fe(Tsi)2, 1,1,1‐tris(trimethylsilyl)‐2‐phenyl ethane and low amounts of Tsi–Cl. Fe(Tsi)2 is monomeric, crystallizes in the monoclinic space group C2/c and consists of a linear C–Fe–C skeleton with d(Fe–C) of 204,5(4) pm.  相似文献   

9.
Bis(trimethylsilyl)amides and -methanides of Yttrium — Molecular Structures of Tris(diethylether-O)lithium-(μ-chloro)-tris[bis(trimethylsilyl)methyl]yttriate, solvent-free Yttrium Tris[bis(trimethylsilyl)amide] as well as the Bis(benzonitrile) Complex The reaction of yttrium(III) chloride with the three-fold molar amount of LiE(SiMe3)2 (E = N, CH) yields the corresponding yttrium derivatives. Yttrium tris-[bis(trimethylsilyl)amide] crystallizes in the space group P3 1c with a = 1 636,3(2), c = 849,3(2) pm, Z = 2. The yttrium atom is surrounded trigonal pyramidal by three nitrogen atoms with Y? N-bond lengths of 222 pm. Benzene molecules are incorporated parallel to the c-axes. The compound with E = CH crystallizes as a (Et2O)3LiCl-adduct in the monoclinic space group P21/n with a = 1 111,8(2), b = 1 865,2(6), c = 2 598,3(9) pm, β = 97,41(3)° and Z = 4. The reaction of yttrium tris[bis(trimethylsilyl)amide] with benzonitrile yields the bis(benzonitrile) complex, which crystallizes in the triclinic space group P1 with a = 1 173,7(2), b = 1 210,3(2), c = 1 912,4(3) pm, α = 94,37(1), β = 103,39(1), γ = 117,24(1)° and Z = 2. The amido ligands are in equatorial, the benzonitrile molecules in axial positions.  相似文献   

10.
A comparison of the tris(trimethylsilyl)silyl I and tris(trimethylsilyl)germyl II radical reactivity is provided. Their formation as well as their reactivity encountered in a large variety of chemical processes (addition to double bond, halogen abstraction, peroxyl radical formation…) is examined by laser flash photolysis, quantum mechanical calculations and electron spin resonance (ESR) experiments. The starting compound (TMS)3GeH is more reactive than (TMS)3SiH toward the t-butoxyl, the t-butylperoxyl and the phosphinoyl radicals. A similar behavior is noted for an aromatic ketone triplet state. II exhibits a lower absolute electronegativity: accordingly, the addition to electron rich alkenes is less efficient than for I. Radical II is also found less reactive for both the peroxylation and the halogen abstraction reactions. The rearrangement of is slower than for ; this is related to the respective exothermicity of the processes.  相似文献   

11.
Tris[bis(trimethylsilyl)amido]zincates of Lithium and Calcium Calcium-bis[bis(trimethylsilyl)amide] and Bis[bis(trimethylsilyl)amido]zinc yield in 1,2-dimethoxyethane quantitatively Calcium-bis{tris[bis(trimethylsilyl)- amido]zincate} · 3DME. When THF is chosen as a solvent, the two reactants and the zincate form a temperature-independent equilibrium, whereas in benzene no reaction occurs. The tris[bis(trimethylsilyl)amido]zincate anion displays characteristic 13C{1H) and 29Si{1H] chemical shifts of 7 and ?8 ppm, respectively; the nature of the solvent, the cation and the complexating ligands don't influence the IR nor NMR data of the zincate anion and thus verify that [Ca(DME)3]2+ and {Zn[N(SiMe3 2]3}? appear as solvent separated ions, which is also confirmed by their insolubility in hydrocarbons.  相似文献   

12.
SnCl4 acts primarily as an oxidant and oxidizes monolithium bis(trimethylsilyl) hydrazide 1 to mainly bis(trimethylsilyl)amine, BSA and tris(trimethylsilyl)hydrazine, TrSH and itself get reduced to SnCl2. Similarly, reaction of SnCl4 with dilithiumbis(trimethylsilyl) hydrazide 2, oxidizes it to lithium tris(trimethylsilyl)hydrazide, Li-TrSH. Reaction of dichlorostannane (reduction of oxidation state of tin from +4 to +2) with 1 gives a simple substitution reaction and give a pale yellow solid, 1,4-bis(trimethylsilyl)-1,2,4,5-tetraza-3,6-distannacyclohexane, 3b. Whereas, in reaction of 2 with SnCl2 intermediate stannimine [(Me3Si)2N-NSn], tetramerizes and further loses tetrakis(trimethylsilyl)tetrazene, TST to give a cubane compound [(Me3Si)N-Sn]4, 4.  相似文献   

13.
1,1-Bis(trimethylsilyl)-2-phenylethylene (1), which has been synthesized from the Peterson reaction between (Me3Si)3CLi and benzaldehyde, reacts with various acyl chlorides (RCOCl, R = Me, Et, iso-Pr, n-Bu, iso-Bu, iso-C5H11, PhCH2, PhCH2CH2) in the presence of AlCl3 to give -silyl-,β-unsaturated enones 3a–3h with high E stereoselectivity along with trans-,β-unsaturated ketones 4a–4h. The enones 3 can be partially converted into the ketones 4 with an excess of AlCl3. Reaction of 1 with RCOCl, (R = Ph, CH3CH=CH) afforded only the ketones 4. Yields were dependent on time and the amounts of AlCl3 used.  相似文献   

14.
The Crystal Structure of [Li · 11/3 H2O · C7H8][{(CH3)3Si}3C–GaI3], a Stable Hydrate of Lithium Tris(trimethylsilyl)methyl Triiodogallate Water‐free Li[Tsi–GaI3], prepared from gallium triiodide and base‐free Tsi–Li (Tsi = –C(SiMe3)3) in toluene, which has been recrystallized several times from humid toluene, c‐hexane, benzene and toluene again gives the water‐containing title compound. According to the X‐ray structure determination this product crystallizes in the monoclinic space group P21/c and consists of three‐membered units of [Tsi–GaI3]‐anions forming an asymmetric triangle and a related chain of three Li cations, four fold but dissimilar coordinated by the oxygen atoms of 4 water molecules, the iodligands of different anions and a h2‐bonded toluene molecule, respectively.  相似文献   

15.
The synthesis of various vinylbis(silanes) from some aryl and heteroaryl aldehydes and (Me3Si)3CLi in Et2O is described. Friedel-Crafts reaction of 1,1-bis(trimethylsilyl)-2-(2-naphthyl)ethene with various acyl chlorides (RCOCl, R = Me, Et, i-Pr, i-Bu, n-pent) gave the corresponding α-silyl-α,β-unsaturated enones with high E steroselectivity. Moreover, poly(styrene)-co-[2,2-bis(trimethylsilyl)ethenyl(styrene)] obtained via the reaction of polymers bearing pendant enone functions and (Me3Si)3CLi, reacts with the same acyl chlorides in the presence of catalytic amount of AlCl3 to give the new macromolecules bearing α-silyl-α,β-unsaturated enones and α,β-unsaturated enones.  相似文献   

16.
Bifunctional derivatives (XMe2Si)2Si(SiMe3)2 (X = H, Cl, or OH) were synthesized for the first time by the reaction of tetrakis(trimethylsilyl)silane with SbCl5. The molecular and crystal structure of bis(hydroxydimethylsilyl)bis(trimethylsilyl)silane was established by X-ray diffraction. The fragmentation of the resulting compounds under electron impact was studied by mass spectrometry. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 3, pp. 461–466, March, 2006.  相似文献   

17.
Preparation and Properties of New Tris(fluoroaryl)boranes B(2-FC6H4)3, B(4-FC6H4)3, B(2,6-F2C6H3)3 and B(C5F4N)3 are prepared from the reactions of RMgX with boron trifluoride, B(OC6F5)3 and B(SC6F5)3 from C6F5XH (X = O, S) and boron trichloride. The synthetic routes and the properties of these mainly new compounds are described.  相似文献   

18.
Lithium 1,2-bis(trimethylsilyl)hydrazine (1a) reacts with Me3SnCl, Et3SnBr and Bu3SnCl to form bis(trimethylsilyl)(trimethylstannyl)hydrazine (2a), (triethylstannyl)bis(trimethyl silyl)hydrazine (2b) and (tributylstannyl)bis(trimethylsilyl)hydrazine (2c), respectively. Compounds 2a and 2b undergo disproportionation at room temperature to form bis(trimethylsilyl)bis(trimethylstannyl)hydrazine (3a) and bis(triethylstannyl)bis(trimethylsilyl)hydrazine (3b). In contrast, 2c is highly stable and can withstand such a reaction up to 150 °C. The monostannylated products, 2a, 2b and 2c do not get lithiated at NH and instead undergo transmetallation in their reaction with RLi or Li to form lithiumbis(trimethylsilyl)hydrazine (1a).  相似文献   

19.
Cobalt-59 NMR chemical shifts of Co(acac)3, and Co(dpm)3 (acac = acetylacetonate ion and dpm = dipivaloylmethanate ion) in 14 organic solvents, C6H14, C6H6, CH2Cl2, CHCl3, CCl4, CH3CN, CH3OH, C2H5OH, CH3CH(OH)CH3, (C2H5)2O, (CH3)2CO, (CH3)2SO, (CH3)2NCHO and C6H5NO2, were measured at five temperatures ranging from 289 to 329 K. The observed chemical shift (obs) was linearly correlated to the maximum absorption wavelength in the visible spectra (max) corresponding to the d-d electronic transition energy between the ground 1A1g and excited 1T1g states. The obs-max relation was explained by the ligand field theory. The temperature coefficients of obs, of each complex showed a negative correlation with obs. The obs, of Co(acac)3 decreased with the increasing electrophilic ability of the solvent (Mayer's acceptor number), whereas no tendency was observed in the case of Co(dpm)3.  相似文献   

20.
The 4-chloromethyl styrene (CMS) was copolymerized with different styrenic monomers such as methyl styrene, 4-methoxy styrene and α-methyl styrene by free radical polymerization method at 70 ± 1 °C using α,α-azobis(isobutyronitrile) (AIBN) as an initiator and the copolymers I, II and III collected respectively. The very bulky tris(trimethylsilyl)methyl {trisyl} substituents were covalently attached to the obtained copolymers with replacement of all the chlorine atoms in CMS units. The polymers, obtained in quantitative yields, were characterized by FT-IR, 1H NMR and 13C NMR spectroscopy; differential scanning calorimetry (DSC) and GPC studies. All the polymers containing trisyl groups showed a high glass transition temperature (in the range 150-190 °C) in comparison with copolymers I-III (in the range 90-95 °C). The increase of the glass transition temperature reflects the substantial increase in rigidity of new polymers bearing very bulky substituents in side chains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号