首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Reaction of thiophene-2-methylamine with one or two equivalents of PPh2Cl in the presence of NEt3, proceeds in thf to give thiophene-2-(N-diphenylphosphino)methylamine, 1a and thiophene-2-(N,N-bis(diphenylphosphino))methylamine, 2a respectively, under anaerobic conditions. Oxidations of 1a and 2a with aqueous hydrogen peroxide, elemental sulfur or gray selenium in thf gives the corresponding oxides, sulfides and selenides [Ph2P(E)NHCH2-C4H3S] (E: O 1b, S 1c, Se 1d) and [(Ph2P(E))2NCH2-C4H3S], (E: O 2b, S 2c, Se 2d) respectively, in high yield. Furthermore, two novel Ru(II) complexes with the P-N ligands 1a and 2a were synthesized starting with the complex [Ru(η6-p-cymene)(μ-Cl)Cl]2. The complexes were fully characterized by analytical and spectroscopic methods. 31P-{1H} NMR, DEPT, 1H-13C HETCOR or 1H-1H COSY correlation experiments were used to confirm the spectral assignments. The molecular structure of thiophene-2-(N-diphenylthiophosphino)methylamine was also elucidated by single-crystal X-ray crystallography. Following activation by NaOH, compounds 3 and 4 catalyze the transfer hydrogenation of acetophenone derivatives to 1-phenylethanol derivatives in the presence of iso-PrOH as the hydrogen source. [Ru(Ph2PNHCH2-C4H3S)(η6-p-cymene)Cl2], 3 and [Ru((PPh2)2NCH2-C4H3S)(η6-p-cymene)Cl]Cl, 4 complexes are suitable catalyst precursors for the transfer hydrogenation of acetophenone derivatives in 0.1 M iso-PrOH solution. Notably 4 acts as an excellent catalyst giving the corresponding alcohols in excellent conversions up to 99% (TOF ? 744 h−1). This transfer hydrogenation is characterized by low reversibility under the experimental conditions.  相似文献   

2.
The dinuclear dichloro complexes [(η6-arene)2Ru2(μ-Cl)2Cl2] and [(η5-C5Me5)2M2(μ-Cl)2Cl2] react with 2-(pyridine-2-yl)thiazole (pyTz) to afford the cationic complexes [(η6-arene)Ru(pyTz)Cl]+ (arene = C6H61, p-iPrC6H4Me 2 or C6Me63) and [(η5-C5Me5)M(pyTz)Cl]+ (M = Rh 4 or Ir 5), isolated as the chloride salts. The reaction of 2 and 3 with SnCl2 leads to the dinuclear heterometallic trichlorostannyl derivatives [(η6-p-iPrC6H4Me)Ru(pyTz)(SnCl3)]+ (6) and [(η6-C6Me6)Ru(pyTz)(SnCl3)]+ (7), respectively, also isolated as the chloride salts. The molecular structures of 4, 5 and 7 have been established by single-crystal X-ray structure analyses of the corresponding hexafluorophosphate salts. The in vitro anticancer activities of the metal complexes on human ovarian cancer cell lines A2780 and A2780cisR (cisplatin-resistant), as well as their interactions with plasmid DNA and the model protein ubiquitin, have been investigated.  相似文献   

3.
The monoxides [Fe(η5-C5Me4PPh2)(η5-C5Me4P{O}Ph2)] (1) and [Os(η5-C5H4PPh2)(η5-C5H4P{O}Ph2)] (2) have been prepared by treatment of the corresponding diphosphines with CCl4 and methanol.These ligands react with [Pd(PhCN)2Cl2] to give dichloride complexes of different structure.The dimeric complex [{Os(η5-C5H4PPh2)(η5-C5H4P{O}Ph2)}PdCl(μ-Cl)]2 (4) contains the monodentate P-coordinated osmocene ligand with the free P{O}Ph2 group, while the octamethylferrocene ligand gives the chelate k2-P,O complex [{Fe(η5-C5Me4PPh2)(η5-C5Me4P{O}Ph2)}PdCl2] (3).The structures of 3 and 4 have been determined crystallographically.Treatment of 3 and 4 with silver salts in CH2Cl2 or acetonitrile leads to the corresponding dicationic complexes[{M(η5-C5R4PPh2)(η5-C5R4P{O}Ph2)}Pd(MeCN)x]2+ (5, M = Fe, R = Me; 6, M = Os, R = H). Complex 5 decomposes upon isolation, in contrast 6 is rather stable, probably due to Os-Pd bonding. The dichlorides 3 and 4 catalyze catalytic amination of p-bromotoluene with N-(4-tolyl)morpholine with lower activity than (dppf)PdCl2, however they perform comparable to (dppf)PdCl2 activity in coupling of p-bromotoluene with p-methoxyphenyl boronic acid.  相似文献   

4.
The reaction of 2,6-dimethoxypyridine-3-carboxylic acid (DMPH) with different precursors [Ti(η5-C5H5)2Cl2], [Ti(η5-C5H4Me)2Cl2], [Ti(η5-C5H4SiMe3)(η5-C5H5)Cl2], [Ti(η5-C5Me5)Cl3], SnMe3Cl and GatBu3 yielded the complexes [Ti(η5-C5H5)2(DMP-κO)2] (1), [Ti(η5-C5H4Me)2(DMP-κO)2] (2), [Ti(η5-C5H4SiMe3)(η5-C5H5)(DMP-κO)2] (3), [Ti(η5-C5Me5)(DMP-κ2O,O′)3] (4), [SnMe3(μ-DMP-κOO′)] (5), and [GatBu2(μ-DMP-κOO′)]2 (6). 1-6 have been characterized by spectroscopic methods and the molecular structure of the complexes 1, 2, 3, 5 and 6 have been determined by X-ray diffraction studies. The cytotoxic activity of 1-6 was tested against the tumour cell lines human adenocarcinoma HeLa, human myelogenous leukaemia K562, human malignant melanoma Fem-x and human breast carcinoma MDA-MB-361. The results of this study show a higher cytotoxicity of the tin(IV) and gallium(III) derivatives in comparison to their titanium(IV) counterparts. Furthermore, the different titanium compounds showed differences in their cytotoxicities with a higher activity of complex 4 (mono-(cyclopentadienyl) derivative) compared to that of 1-3 (bis-(cyclopentadienyl) complexes). A qualitative UV-vis study of the interactions of these complexes with DNA has also been carried out.  相似文献   

5.
Four titanium(IV) carboxylate complexes [Ti(η5-C5H5)2(O2CCH2SMes)2] (1), [Ti(η5-C5H4Me)2(O2CCH2SMes)2] (2), [Ti(η5-C5H5)(η5-C5H4SiMe3)(O2CCH2SMes)2] (3) and [Ti(η5-C5Me5)(O2CCH2SMes)3] (4; Mes = 2,4,6-Me3C6H2) have been synthesised by the reaction of the corresponding titanium derivatives [Ti(η5-C5H5)2Cl2], [Ti(η5-C5H4Me)2Cl2], [Ti(η5-C5H5)(η5-C5H4SiMe3)Cl2] and [Ti(η5-C5Me5)Cl3] and two (for 13) or three (for 4) equivalents of mesitylthioacetic acid. Complexes 14 have been characterized by spectroscopic methods and the molecular structure of the complexes 1, 2 and 4 have been determined by X-ray diffraction studies. The cytotoxic activity of 14 was tested against tumor cell lines human adenocarcinoma HeLa, human myelogenous leukemia K562, human malignant melanoma Fem-x, and normal immunocompetent cells, that is peripheral blood mononuclear cells PBMC and compared with those of the reference complexes [Ti(η5-C5H5)2Cl2] (R1), [Ti(η5-C5H4Me)2Cl2] (R2), [Ti(η5-C5H5)(η5-C5H4SiMe3)Cl2] (R3) and cisplatin. In all cases, the cytotoxic activity of the carboxylate derivatives was higher than that of their corresponding dichloride analogues, indicating a positive effect of the carboxylato ligand on the final anticancer activity. Complexes 14 are more active against K562 (IC50 values from 72.2 to 87.9 μM) than against HeLa (IC50 values from 107.2 to 142.2 μM) and Fem-x cells (IC50 values from 90.2 to 191.4 μM).  相似文献   

6.
The mononuclear cations of the general formula [(η6-arene)RuCl(dpqMe2)]+ (dpqMe2 = 6,7-dimethyl-2,3-di(pyridine-2-yl)quinoxaline; arene = C6H6, 1; C6H5Me, 2; p-PriC6H4Me, 3; C6Me6, 4) as well as the dinuclear dications [(η6-arene)2Ru2Cl2(μ-dpqMe2)]2+ (arene = C6H6, 5; C6H5Me, 6; p-PriC6H4Me, 7; C6Me6, 8) have been synthesised from 6,7-dimethyl-2,3-di(pyridine-2-yl)quinoxaline (dpqMe2) and the corresponding chloro complexes [(η6-C6H6)Ru(μ-Cl)Cl]2, [(η6-C6H5Me)Ru(μ-Cl)Cl]2, [(η6-p-PriC6H4Me)Ru(μ-Cl)Cl]2 and [(η6-C6Me6)Ru(μ-Cl)Cl]2, respectively. The X-ray crystal structure analyses of [1][PF6], [3][PF6] and [6][PF6]2 reveal a typical piano-stool geometry around the metal centre; in the dinuclear complexes the two chloro ligands, with respect to each other, are found to be trans oriented.  相似文献   

7.
The mononuclear cationic complexes [(η6-C6H6)RuCl(L)]+ (1), [(η6-p-iPrC6H4Me)RuCl(L)]+ (2), [(η5-C5H5)Ru(PPh3)(L)]+ (3), [(η5-C5Me5)Ru(PPh3)(L)]+ (4), [(η5-C5Me5)RhCl(L)]+ (5), [(η5-C5Me5)IrCl(L)]+ (6) as well as the dinuclear dicationic complexes [{(η6-C6H6)RuCl}2(L)]2+ (7), [{(η6-p-iPrC6H4Me)RuCl}2(L)]2+ (8), [{(η5-C5H5)Ru(PPh3)}2(L)]2+ (9), [{(η5-C5Me5)Ru(PPh3)}2(L)]2+ (10), [{(η5-C5Me5)RhCl}2(L)]2+ (11) and [{(η5-C5Me5)IrCl}2(L)]2+ (12) have been synthesized from 4,4′-bis(2-pyridyl-4-thiazole) (L) and the corresponding complexes [(η6-C6H6)Ru(μ-Cl)Cl]2, [(η6-p-iPrC6H4Me)Ru(μ-Cl)Cl]2, [(η5-C5H5)Ru(PPh3)2Cl)], [(η5-C5Me5)Ru(PPh3)2Cl], [(η5-C5Me5)Rh(μ-Cl)Cl]2 and [(η5-C5Me5)Ir(μ-Cl)Cl]2, respectively. All complexes were isolated as hexafluorophosphate salts and characterized by IR, NMR, mass spectrometry and UV-vis spectroscopy. The X-ray crystal structure analyses of [3]PF6, [5]PF6, [8](PF6)2 and [12](PF6)2 reveal a typical piano-stool geometry around the metal centers with a five-membered metallo-cycle in which 4,4′-bis(2-pyridyl-4-thiazole) acts as a N,N′-chelating ligand.  相似文献   

8.
The tetraethyl- and tetramethyl-cyclobutadiene complexes [(η4-C4R4)Co(η5-C5H4CHO)] R = Et, 5, R = Me, 7, and [(η4-C4R4)Co(η5-C5H4CO2Me)] R = Et, 6, R = Me, 8, are conveniently prepared by photolysis of the corresponding isocobaltocenium cations [(η4-C4R4)Co(η6-C6H5Me)]+ in acetonitrile, and subsequent treatment with Na[C5H4CHO] or Na[C5H4CO2Me]. The aldehydes 5 and 7 undergo Wittig and Knoevenagel reactions with [FcCH2PPh3]I and CH2(CN)2, to form [(η4-C4R4)Co(η5-C5H4CH=CHFc)] and [(η4-C4R4)Co(η5-C5H4CH=C(CN)2], 11 and 15, respectively. The Horner-Wittig reaction of [(η4-C4R4)Co(η5-C5H4CH2P(O)(OEt)2] with [(η4-C4Ph4)Co(η5-C5H4CHO)] yields [(η4-C4R4)Co(η55-C5H4CHCH-C5H4)Co(η4-C4Ph4)], 12 and 13. [(η4-C4Me4)Co(η5-C5H4CHO)] also reacts with t-BuLi and FcLi to furnish the corresponding secondary alcohols, 16 and 17, respectively. Surprisingly, the attempted direct synthesis of 5 by reaction of Na[C5H5] and ethyl formate with [(η4-C4Et4)Co(CO)2I], 1, instead yielded [(η5-C5H5)Co(η4-3,4,5,6-tetraethyl-α-pyrone)], 18, and a mechanistic proposal is advanced. The X-ray crystal structures of 1, 7, 8, 11(Z), 15 and 18, and also the isocobaltocenium salts [(η4-C4Et4)Co(η6-C6H5Me)][PF6], 2, and [(η4-C4Et4)Co(η6-1,3,5-C6H3Me3)][PF6], 4, are reported.  相似文献   

9.
The dimeric starting material [Ru(η6-p-cymene)(μ-Cl)Cl]2 reacts with N3,N3′-bis(diphenylphosphino)-2,2′-bipyridine-3,3′-diamine, 1 and P,P′-diphenylphosphinous acid-P,P′-[2,2′-bipyridine]-3,3′-diyl ester, 2 ligands to afford bridged dinuclear complexes [C10H6N2{NHPPh2-Ru(η6-p-cymene)Cl2}2], 3 and [C10H6N2{OPPh2-Ru(η6-p-cymene)Cl2}2], 4 in quantitative yields. These bis(aminophosphine) and bis(phosphinite) based Ru(II) complexes serve as active catalyst precursors for the transfer hydrogenation of acetophenone derivatives in 2-propanol and especially 4 acts as a good catalyst, giving the corresponding alcohols in 99% yield in 20 min (TOF ? 280 h−1).  相似文献   

10.
Reactions of 0.5 eq. of the dinuclear complexes [(η6-arene)Ru(μ-Cl)Cl]2 (arene = η6-C6H6, η6-p-iPrC6H4Me) and [(Cp∗)M(μ-Cl)Cl]2 (M = Rh, Ir; Cp∗ = η5-C5Me5) with 4,6-disubstituted pyrazolyl-pyrimidine ligands (L) viz. 4,6-bis(pyrazolyl)pyrimidine (L1), 4,6-bis(3-methyl-pyrazolyl)pyrimidine (L2), 4,6-bis(3,5-dimethyl-pyrazolyl)pyrimidine (L3) lead to the formation of the cationic mononuclear complexes [(η6-C6H6)Ru(L)Cl]+ (L = L1, 1; L2, 2; L3, 3), [(η6-p-iPrC6H4Me)Ru(L)Cl]+ (L = L1, 4; L2, 5; L3, 6), [(Cp∗)Rh(L)Cl]+ (L = L1, 7; L2, 8; L3, 9) and [(Cp∗)Ir(L)Cl]+ (L = L1, 10; L2, 11; L3, 12), while reactions with 1.0 eq. of the dinuclear complexes [(η6-arene)Ru(μ-Cl)Cl]2 and [(Cp∗)M(μ-Cl)Cl]2 give rise to the dicationic dinuclear complexes [{(η6-C6H6)RuCl}2(L)]2+ (L = L1, 13; L2, 14; L3, 15), [{(η6-p-iPrC6H4Me)RuCl}2(L)]2+ (L = L1, 16; L2, 17; L3, 18), [{(Cp∗)RhCl}2(L)]2+ (L = L1, 19; L2, 20; L3, 21) and [{(Cp∗)IrCl}2(L)]2+ (L = L1 22; L2, 23; L3 24). The molecular structures of [3]PF6, [6]PF6, [7]PF6 and [18](PF6)2 have been established by single crystal X-ray structure analysis.  相似文献   

11.
Decamethyl-1,3-diboraruthenocene [(η5-C5Me5)Ru{η5-(CMe)3(BMe)2}] (1) reacts with cyclo-octasulfur in hexane to give [(η5-C5Me5){η5-(CMe)3(BMe)2}RuS] (3), which may also be obtained from 1 and propylene sulfide. 1 reacts with H2S to form the ruthenathiacarboranyl complex [(η5-C5Me5)Ru{η4-(CMe)3(BMe)2S}] (6), for which a nido-structure is proposed. The isomeric compounds 3 and 6 have different stabilities: 3 loses sulfur and unexpectedly the closo-cluster [(η5-C5Me5)2Ru2H(CMe)3(BMe)2] (4) is formed with hydrogen bridging the basal and apical Ru centers. Reaction of 1 with carbonylsulfide (COS) yields the dinuclear ruthenium compound [(η5-C5Me5)Ru{η5-(CMe)3(BMe)2(S)(COBMe)}]2 (7) in which two B-O groups bridge two ruthenium complexes. Its formation results from a complex reaction sequence: sulfur inserts into the diborolyl ring and the ligand CO forms an oxygen-boron bridge to a second molecule, followed by insertion of the carbonyl carbon into the double bond of the diboraheterocycle. Carbon disulfide reacts with 1 to give the dinuclear complex 8 with two CS2 molecules connecting the ruthenium centers. When 1 and P4 are heated in toluene, the sandwich 9 is obtained by formal insertion of a P-H group into the diborolyl ring of 1 and the triple-decker [{η5-(C5Me5)Ru}2{μ-(MeC)3P(MeB)2} (10) is detected in the mass spectrum. The phosphaalkyne PCtBu inserts into 1 to give the ruthenaphosphacarborane [(η5-C5Me5)Ru{(CMe)2(BMe)(PCtBu)(CMe)(BMe)}] (11) in high yield. Phosphanes react with 1 to give weak donor-acceptor complexes 1 · PH2R (12) (R=Ph, H). The compositions of the compounds are deduced from spectroscopic and analytical data and are confirmed for 4 and 7 by X-ray structural analyses.  相似文献   

12.
The complex [(η6-p-cymene)Ru(μ-Cl)Cl]21 reacts with pyrazole ligands (3a-g) in acetonitrile to afford the amidine derivatives of the type [(η6-p-cymene)Ru(L)(3,5-HRR′pz)](BF4)2 (4a-f), where L = {HNC(Me)3,5-RR′pz}; R, R′ = H (4a); H, CH3 (4b); C6H5 (4c); CH3, C6H5 (4d) OCH3 (4e); and OC2H5 (4f), respectively. The ligand L is generated in situ through the condensation of 3,5-HRR′pz with acetonitrile under the influence of [(η6-p-cymene)RuCl2]2. The complex [(η6-C6Me6)Ru(μ-Cl)Cl]22 reacts with pyrazole ligands in acetonitrile to yield bis-pyrazole derivatives such as [(η6-C6Me6)Ru (3,5-HRR′pz)2Cl](BF4) (5a-b), where R, R′ = H (5a); H, CH3 (5b), as well as dimeric complexes of pyrazole substituted chloro bridged derivatives [{(η6-C6Me6)Ru(μ-Cl) (3,5-HRR′pz)}2](BF4)2 (5c-g), where R, R′ = CH3 (5c); C6H5 (5d); CH3, C6H5 (5e); OCH3 (5f); and OC2H5 (5g), respectively. These complexes were characterized by FT-IR and FT-NMR spectroscopy as well as analytical data. The molecular structures1 of representative complexes [(η6-C6Me6)Ru{3(5)-Hmpz}2Cl]+5b, [(η6-C6Me6)Ru(μ-Cl)(3,5-Hdmpz)]22+5c and [(η6-C6Me6)Ru(μ-Cl){3(5)Me,5(3)Ph-Hpz}]22+5e were established by single crystal X-ray diffraction studies.  相似文献   

13.
Trimethylstannyl (diphenylphosphino)acetate (1), which is readily accessible from potassium (diphenylphosphino)acetate and trimethylstannyl chloride, may serve as the source of (diphenylphosphino)acetate anion in the preparation of coordination compounds. Thus, the reactions between [M(cod)Cl2] (M = Pd and Pt; cod = η22-cycloocta-1,5-diene) and two equivalents of 1 give [M(Ph2PCH2CO22O,P)2] (2 and 3), while the reaction of [{Pd(μ-Cl)Cl(PFur3)}2] (4; Fur = 2-furyl) with one equivalent of 1 yields [SP-4-3]-[PdCl(Ph2PCH2CO22O,P)(PFur3)] (5). The reactions of 1 with the dimers [{Rh(η5-C5Me5)Cl(μ-Cl)}2] and [{Ru(η6-1,4-MeC6H4(CHMe2))Cl(μ-Cl)}2] (at 1-to-metal ratio 1:1) produce O,P-chelated complexes as well, albeit as stable adducts with the liberated Me3SnCl: [RhCl(η5-C5Me5)(Ph2PCH2CO22O,P)] · Me3SnCl (6) and[RuCl(η6-1,4-MeC6H4(CHMe2))(Ph2PCH2CO22O,P)] · Me3SnCl (8). The related complexes with P-monodentate (diphenylphosphino)acetic acid, [RhCl25-C5Me5)(Ph2PCH2CO2H-κ,P)] (7) and [RuCl26-1,4-MeC6H4(CHMe2))(Ph2PCH2CO2H-κP)] (9), were obtained by bridge splitting in the dimers with the phosphinocarboxylic ligand. All new compounds were characterized by spectral methods and combustion analyses, and the structures of 2 · 3CH2Cl2, 3, 4, 5, 6 and 8 were determined by X-ray crystallography.  相似文献   

14.
A quite general approach for the preparation of η5-and η6-cyclichydrocarbon platinum group metal complexes is reported. The dinuclear arene ruthenium complexes [(η6-arene)Ru(μ-Cl)Cl]2 (arene = C6H6, C10H14 and C6Me6) and η5-pentamethylcyclopentadienyl rhodium and iridium complexes [(η6-C5Me5)M(μ-Cl)Cl]2 (M = Rh, Ir) react with 2 equiv. of 4-amino-3,5-di-pyridyltriazole (dpt-NH2) in presence of NH4PF6 to afford the corresponding mononuclear complexes of the type [(η6-arene)Ru(dpt-NH2)Cl]PF6 {arene = C10H14 (1), C6H6 (2) and C6Me6 (3)} and [(η6-C5Me5)M(dpt-NH2)Cl]PF6 {M = Rh (4), Ir (5)}. However, the mononuclear η5-cyclopentadienyl analogues such as [(η5-C5H5)Ru(PPh3)2Cl], [(η5-C5H5)Os(PPh3)2Br], [(η5-C5Me5)Ru(PPh3)2Cl] and [(η5-C9H7)Ru(PPh3)2Cl] complexes react in presence of 1 equiv. of dpt-NH2 and 1 equiv. of NH4PF6 in methanol yielded mononuclear complexes [(η5-C5H5)Ru(PPh3)(dpt-NH2)]PF6 (6), [(η5-C5H5)Os(PPh3)(dpt-NH2)]PF6 (7), [(η5-C5Me5)Ru(PPh3)(dpt-NH2)]PF6 (8) and [(η5-C9H7)Ru(PPh3)(dpt-NH2)]PF6 (9), respectively. These compounds have been totally characterized by IR, NMR and mass spectrometry. The molecular structures of 4 and 6 have been established by single crystal X-ray diffraction and some of the representative complexes have also been studied by UV–Vis spectroscopy.  相似文献   

15.
Reactions of the dinuclear complexes [(η6-arene)Ru(μ-Cl)Cl]2 (arene = C6H6, p-iPrC6H4Me) and [(η5-C5Me5)M(μ-Cl)Cl]2 (M = Rh, Ir) with 2-substituted-1,8-naphthyridine ligands, 2-(2-pyridyl)-1,8-naphthyridine (pyNp), 2-(2-thiazolyl)-1,8-naphthyridine (tzNp) and 2-(2-furyl)-1,8-naphthyridine (fuNp), lead to the formation of the mononuclear cationic complexes [(η6-C6H6)Ru(L)Cl]+ {L = pyNp (1); tzNp (2); fuNp (3)}, [(η6-p-iPrC6H4Me)Ru(L)Cl]+ {L = pyNp (4); tzNp (5); fuNp (6)}, [(η5-C5Me5)Rh(L)Cl]+ {L = pyNp (7); tzNp (8); fuNp (9)} and [(η5-C5Me5)Ir(L)Cl]+ {L = pyNp (10); tzNp (11); fuNp (12)}. All these complexes are isolated as chloro or hexafluorophosphate salts and characterized by IR, NMR, mass spectrometry and UV/Vis spectroscopy. The molecular structures of [1]Cl, [2]PF6, [4]PF6, [5]PF6 and [10]PF6 have been established by single crystal X-ray structure analysis.  相似文献   

16.
The 16-electron half-sandwich complexes CpRh[E2C2(B10H10)] (E = S, 1a; Se, 1b) react with [Ru(COD)Cl2]x under different conditions to give different types of heterometallic complexes. When the reactions were carried out in THF for 24 h, the binuclear Rh/Ru complexes [CpRh(μ-Cl)2(COD)Ru][E2C2(B10H10)] (E = S, 2a; Se, 2b) bridged by two Cl atoms and the binuclear Rh/Rh complexes (CpRh)2[E2C2(B10H10)] (E = S, 3a; Se, 3b) with direct Rh-Rh bond can be isolated in moderate yields. [Ru(COD)Cl2] fragments in 2a and 2b have inserted into the Rh-E bond. If the [Ru(COD)Cl2]x was reacted with 1a in the presence of K2CO3 in methanol solution, the product [CpRh(COD)]Ru[S2C2(B10H10]] (4a), K[(μ-Cl)(μ-OCH3)Ru(COD)]4 (5a) and 3a were obtained. The B(3)-H activation in complex 4a was found. However, when the reaction between 1b and [Ru(COD)Cl2]x was carried out in excessive NaHCO3, the carborane cage opened products {CpRh[S2C2(B9H10)]}Ru(COD) (6b), {CpRh[S2C2(B9H9)]}Ru(COD)(OCH3) (7b) and 3b were obtained. All complexes were fully characterized by their IR, 1H NMR and elemental analyses. The molecular structures of 2a, 2b, 3b, 4a, 5a, and 7b have been determined by X-ray crystallography.  相似文献   

17.
The pendant nitrogen atom of the Ph2PPy ligand in the Pd(II)-allyl complexes [PdCl(η3-2-CH3-C3H4)(Ph2PPy)] (1) and [Pd(η3-2-CH3-C3H4)(Ph2PPy)2]BF4 (3) has been protonated with methanesulfonic acid to afford the corresponding pyridinium salts [PdCl(η3-2-CH3-C3H4)(Ph2PPyH)](CH3SO3) (1a) and [Pd(η3-2-CH3-C3H4)(Ph2PPyH)2](CH3SO3)2(BF4) (3a).Protonation strongly influences the 1H and 13C NMR spectral parameters of the allyl moieties of 1a and 3a whose signals resonate at lower fields with respect to the parent species indicating that upon protonation Ph2PPy becomes a weaker σ-donor and a stronger Π-acceptor. The allyl moiety, which in 1 is static, becomes dynamic in 1a, the observed syn-syn and anti-anti exchange being due to deligation of the protonated phosphine from the metal centre. Treatment of complex 3 with diethylamine in the presence of fumaronitrile gives the new Pd(0)-olefin complex [Pd(η2-fumaronitrile)(PPh2Py)2] (4) which has been characterized by elemental analysis and NMR spectroscopy. Low temperature protonation of 4 with methanesulfonic acid leads to the bis-protonated species [Pd(η2-fumaronitrile)(Ph2PPyH)2](CH3SO3)2 (4a) which is stable only at temperatures <0 °C.  相似文献   

18.
Trichloro methyl [Nb{η5-C5H3(SiXMe2)(SiMe3)}Cl3Me] (X = Cl, 2; Me, 3), dichloro dimethyl [Nb{η5-C5H3(SiXMe2)(SiMe3)}Cl2Me2] (X = Cl, 4; Me, 5) and tetramethyl [Nb{η5-C5H3(SiXMe2)(SiMe3)}Me4] (X = Me, 6; Cl, 7) niobium complexes were synthesized by treatment of starting tetrachloro derivatives [Nb{η5-C5H3(SiXMe2)(SiMe3)}Cl4] (X = Cl, 1a; Me, 1b) with dimethyl zinc or chloro methyl magnesium in different proportions and conditions. A mixture of trichloro methyl and dichloro dimethyl tantalum complexes [Ta{η5-C5H3(SiClMe2)(SiMe3)}Cl4−xMex] (x = 1, 8; 2, 9) in a 2:1 molar ratio was obtained in the reaction of [Ta{η5-C5H3(SiClMe2)(SiMe3)}Cl4] (1c) with 0.5 equivalents of ZnMe2 in toluene at low temperature. 8 could be isolated as single compound when 1 equivalent of 1c was added to the mixtures of 8 and 9, while the reaction of 1c with 1.5 equivalents of dimethyl zinc gave 9 as unitary product. However, [Ta{η5-C5H3(SiMe3)2}Cl4] (1d) reacts with 0.5 equivalents of alkylating reagent giving the trichloro methyl compound [Ta{η5-C5H3(SiMe3)2}Cl3Me] (10) in good yield. On the other hand, [Ta{η5-C5H3(SiMe3)2}Cl4] (1d) reacts with 2 equivalents of MgClMe in hexane at room temperature giving a mixture of dichloro dimethyl and chloro trimethyl complexes[Ta{η5-C5H3(SiMe3)2}Cl4−xMex] (x = 2, 11; 3, 12), while the use of 4 equivalents of MgClMe converts 1c into the tetramethyl derivative [Ta{η5-C5H3(SiClMe2)(SiMe3)}Me4] (13). Finally, a tetramethyl tantalum complex [Ta{η5-C5H3(SiMe3)2}Me4] (14) was prepared by reaction of [Ta{η5-C5H3(SiXMe2)(SiMe3)}Cl4] (X = Cl, 1c; Me, 1d) with 5 (X = Cl) or 4 (X = Me) equivalents of MgClMe in diethyl ether (X = Cl) or hexane (X = Me), respectively, as solvent. All the complexes were studied by IR and NMR spectroscopy and the molecular structure of the complex 11 was determined by X-ray diffraction methods.  相似文献   

19.
Hydrogen transfer reduction processes are attracting increasing interest from synthetic chemists in view of their operational simplicity. Reaction of [Ph2PNHCH2‐C4H3S] with [Ru(η6‐benzene)(µ‐Cl)Cl]2, [Rh(µ‐Cl)(cod)]2 and [Ir(η5‐C5Me5)(µ‐Cl)Cl]2 gave a range of new monodendate complexes [Ru(Ph2PNHCH2‐C4H3S)(η6‐benzene)Cl2], 1, [Rh(Ph2PNHCH2‐C4H3S)(cod)Cl], 2, and [Ir(Ph2PNHCH2‐C4H3S)(η5‐C5Me5)Cl2], 3, respectively. All new complexes were fully characterized by analytical and spectroscopic methods. 1H? 31P NMR, 1H? 13C HETCOR or 1H? 1H COSY correlation experiments were used to confirm the spectral assignments. 1–3 are suitable catalyst precursors for the transfer hydrogenation of acetophenone derivatives. Notably [Ru(Ph2PNHCH2‐C4H3S)(η6‐benzene)Cl2], 1, acts as an excellent catalyst, giving the corresponding alcohols in 98–99% yields in 30 min at 82 °C (TOF ≤200 h?1) for the transfer hydrogenation reaction in comparison to analogous rhodium or iridium complexes. This transfer hydrogenation is characterized by low reversibility under these conditions. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
Protonation of the cycloheptatriene complex [W(CO)36-C7H8)] with H[BF4] · Et2O in CH2Cl2 affords the cycloheptadienyl system [W(CO)35-C7H9)][BF4] (1). Complex 1 reacts with NaI to yield [WI(CO)35-C7H9)], which is a precursor to [W(CO)2(NCMe)33-C7H9)][BF4], albeit in very low yield. The dicarbonyl derivatives [W(CO)2L25-C7H9)]+ (L2=2PPh3, 4, or dppm, 5) were obtained, respectively, by H[BF4] · Et2O protonation of [W(CO)2(PPh3)(η6-C7H8)] in the presence of PPh3 and reaction of 1 with dppm. The X-ray crystal structure of 4 (as a 1/2 CH2Cl2 solvate) reveals that the two PPh3 ligands are mutually trans and are located beneath the central dienyl carbon and the centre of the edge bridge. The first examples of cyclooctadienyl tungsten complexes [WBr(CO)2(NCMe)2(1-3-η:5,6-C8H11)] (6) and [WBr(CO)2(NCMe)2(1-3-η:4,5-C8H11)] (7) were synthesised by reaction of [W(CO)3(NCR)3] (R=Me or Prn) with 3-Br-1,5-cod/6-Br-1,4-cod or 5-Br-1,3-cod/3-Br-1,4-cod (cod=cyclooctadiene), respectively. Complexes 6 and 7 are precursors to the pentahapto-bonded cyclooctadienyl tungsten species [W(CO)2(dppm)(1-3:5,6-η-C8H11)][BF4] and [W(CO)2(dppe)(1-5-η-C8H11)][BF4] · CH2Cl2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号