首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 615 毫秒
1.
Reactions of Fe2(CO)9 with Cp(CO)2MnCCHPh (1) and Cp(CO)(PPh3)MnCCHPh (3) gave the heterometallic trimethylenemethane complexes η4-{C[Mn(CO)2Cp](CO)CHPh}Fe(CO)3 (2) and η4-{C[Mn(CO)(PPh3)Cp](CO)CHPh}Fe(CO)3 (4), respectively. The formation of the benzylideneketene [PhHCCCO] fragment included in complexes 2 and 4 occurs via intramolecular coupling of the carbonyl and vinylidene ligands. The structures of 3 and 4 were determined by single crystal XRD methods. The influence of the nature of the L ligands at the Mn atom on the structural and spectroscopic characteristics of η4-{C[Mn(CO)(L)Cp](CO)CHPh}Fe(CO)3 (L = CO (2), PPh3 (4)) is considered. According to the VT 1H and 13C NMR spectra, complex 2 reversibly transforms in solution into μ-η11-vinylidene isomer Cp(CO)2MnFe(μ-CCHPh)(CO)4 (2a), whereas complex 4 containing the PPh3 ligand is not able to a similar transformation.  相似文献   

2.
The diruthenium μ-allenyl complex [Ru2(CO)(NCMe)(μ-CO){μ-η12-C(H)CC(Me)(Ph)}(Cp)2][BF4], 3b, reacts with halide anions to yield the neutral derivatives [Ru2(CO)2(X){μ-η12-C(H)CC(Me)(Ph)}(Cp)2] [X = Cl, 4b; X = Br, 4c; X = I, 4d]. Complex 4b undergoes isomerization to the unprecedented bridging vinyl-chlorocarbene species [Ru2(CO)(μ-CO){μ-η13- C(Cl)C(H)C(Me)(Ph)}(Cp)2], 10, upon filtration of a CH2Cl2 solution through an alumina column.Complex 3b reacts with an excess of NaBH4 to give five products: the allene complex [Ru2(CO)2{μ-η22- CH2CC(Me)(Ph)}(Cp)2], 5; the hydride species trans-[Ru2(CO)2(μ-H){μ-η12-CHCC(Me)(Ph)}(Cp)2], 6, and cis-[Ru2(CO)2(μ-H){μ-η12-CHCC(Me)(Ph)}(Cp)2], 8; the vinyl-alkylidene [Ru2(CO)(μ-CO){μ-η13- C(H)C(H)C(Me)(Ph)}(Cp)2], 9; and the cluster [Ru3(CO)3(μ-H)3(Cp)3], 7.Studies on the thermal stabilities of 5, 6, 8 and 9 have suggested a plausible mechanism for the formation of these complexes and for the synthesis of 10.  相似文献   

3.
Whereas {Ru(dppm)Cp*}2(μ-CCCC) (2) is the only product formed by deprotonation of [{Ru(dppm)Cp*}2{μ(CCHCHC)}]+ with dbu, a mixture of 2 with Ru{CCCHCH(PPh2)2[RuCp*]}(dppm)Cp* (3) and {Cp*Ru(PPh2CHCCH-)}2 (4) is obtained with KOBut. A similar reaction with [{Ru(dppm)Cp*}2{μ(CCMeCMeC)}]+ (5) gave Ru{CCCMeCH(PPh2)2[RuCp*]}(dppm)Cp* (6). X-ray structures of 4, 5 and 6 confirm the presence of the 1-ruthena-2,4-diphosphabicyclo[1.1.1]pentane moiety, which is likely formed by an intramolecular attack of the deprotonated dppm ligand on C(1) of the vinylidene ligand. Protonation of {Ru(dppe)Cp*}2(μ-CCCC) (8-Ru) regenerates its precursor [{Ru(dppe)Cp*}2{μ(CCHCHC)}]2+ (7-Ru). Ready oxidation of the bis(vinylidene) complex affords the cationic carbonyl [Ru(CO)(dppe)Cp*]PF6 (9) (X-ray structure).  相似文献   

4.
The preparation of several ruthenium complexes containing cyanocarbon anions is reported. Deprotonation (KOBut) of [Ru(NCCH2CN)(PPh3)2Cp]PF6 (1) gives Ru{NCCH(CN)}(PPh3)2Cp (2), which adds a second [Ru(PPh3)2Cp]+ unit to give [{Ru(PPh3)2Cp}2(μ-NCCHCN)]+ (3). Attempted deprotonation of the latter to give the μ-NCCCN complex was unsuccessful. Similar chemistry with tricyanomethanide anion gives Ru{NCC(CN)2}(PPh3)2Cp (4) and [{Ru(PPh3)2Cp}2{μ-NCC(CN)CN}]PF6 (5), and with pentacyanopropenide, Ru{NCC(CN)C(CN)C(CN)2}(PPh3)2Cp (6) and [{Ru(PPh3)2Cp}2{μ-NCC(CN)C(CN)C(CN)CN}]PF6 (7). The Ru(dppe)Cp* analogues of 6 and 7 (8 and 9) were also prepared. Thermolysis of 6 (refluxing toluene, 12 h) results in loss of PPh3 and formation of the binuclear cyclic complex {Ru(PPh3)Cp[μ-NC{C(CN)C(CN)2}CN]}2 (10). The solid-state structures of 2-4 and 8-10 have been determined and the nature of the isomers shown to be present in solutions of the binuclear cations 7 and 9 by NMR studies has been probed using Hartree-Fock and density functional theory.  相似文献   

5.
The diiron complex [Fe2{μ-к1(O):η1(C):η3(C)-C(N(Me)(Xyl))C(H)C(Me)C(O)OMe}(μ-CO)(Cp)2] (2) has been obtained from the diiron bridging vinyliminium [Fe2{μ-η13-C(Me)C(H)CN(Me)(Xyl)}(μ-CO)(CO)(Cp)2][SO3CF3] (1; Xyl = 2,5-C6H3Me2) upon treatment with NaH in the presence of CH2CCMe2, followed by chromatography on alumina with MeOH as eluent. The reaction consists in the incorporation of a methylcarboxylate unit, assembled from CO and MeO, into the bridging vinyliminium ligand. The resulting complex 2 exhibits a C4 fragment bridging the two iron centres through the carbonyl oxygen atom and the allylidene moiety.The X-ray molecular structure of 2 has been determined.  相似文献   

6.
The multifunctional ligands [(Z)-FcCCSC(H)C(H)XR] [X = O, R = Me (2a); X = O, R = Et (2b); X = S, R = Ph (3); X = S, R = C6F5 (5)] and [(Z,Z)-Fc(SR)CC(H)SC(H)C(H)SR] [R = Ph (4), C6F5 (6)] have been prepared through hydroalkoxylation and hydrothiolation processes of the alkyne groups in the compound FcCCSCCH 1. Reactions between compound 3 and the carbonyl metals Co2(CO)8, Os3(CO)10(NCMe)2 and Fe2(CO)9 have allowed the synthesis of the polynuclear compounds [(Z)-{Co2(CO)6}(μ-η2-FcCCSC(H)C(H)SPh)] 9, [(Z)-Os3(CO)9(μ-CO){μ32-FcCCSC(H)C(H)(SPh)}] 10 and [(Z)-{Fe3(CO)9}[μ33-(CCS)-FcCCSC(H)C(H)(SPh)] 11. All the compounds have been characterized by elemental analysis, 1H and 13C{1H} NMR spectroscopy, mass spectrometry and the crystal structure of compounds [(Z)-FcCCSC(H)C(H)OMe] 2a and [{Co2(CO)6}2(μ-η22-FcCCSCCSiMe3)] 7 have been solved by X ray diffraction analysis.  相似文献   

7.
In contrast to the simple diynyl complexes formed in reactions between HCCCCFc and MCl(dppe)Cp∗; (M = Fe, Ru), an analogous reaction with RuCl(PPh3)2Cp∗; in the presence of KPF6 and dbu resulted in dimerisation of the diyne at the Ru centre to afford a mixture of [Ru{η12-C(CCFc)C(L)CHCCCHFc}(PPh3)Cp∗]PF6 (L = dbu 1, PPh32). Similar reactions with RuCl(PR3)2L gave [Ru{η12-C(CCFc)C(dbu)CHCCCHFc}(PR3)L]PF6 (L = Cp, R = Ph 3, m-tol 4; L = η5-C9H7, R = Ph 5). The reaction between 3 and I2, followed by crystallization of the paramagnetic product from MeOH, afforded the dicationic [Ru{C(CCFc)C(dbu)CHC(OMe)C(OMe)CHFc}(PPh3)Cp](I3)26. The molecular structures of 2·2CH2Cl2 and 6.S (S = 2CH2Cl2, C6H6) were determined by single-crystal XRD studies.  相似文献   

8.
The addition of phosphines to the manganese allenylidene complexes Cp(CO)2MnCCC(Ph)R (R = H, Ph) proceeds selectively at the Cα atom to result in the α-phosphonioallenyl complexes Cp(CO)2Mn-C(+PR31)CC(Ph)R. The protonation of the latter affords the η2-(1,2)-phosphonioallenes Cp(CO)2Mn{η2-(1,2)-HC(+PR31)CC(Ph)R}, rather than the phosphoniovinylcarbenes Cp(CO)2MnC(+PR31)-HCC(Ph)R. All complexes obtained are stereochemically rigid and do not isomerize into the η2-(2,3)-phosphonioallene isomers.  相似文献   

9.
The dimetallacyclopentenone complexes [Fe2Cp2(CO)(μ−CO){μ−η13−CαHCβ(R)C(O)}] (R = CH2OH, 1a; R = CMe2OH, 1b; R = Ph, 1c) were prepared by photolytic reaction of [Fe2Cp2(CO)4] with alkyne according to the literature procedure. The X-ray and the electrochemical characterization of 1c are presented. The μ-allenyl compound [Fe2Cp2(CO)2(μ−CO){μ−η12α,β−CαHCβCMe2][BF4] ([2][BF4]), obtained by reaction of 1b with HBF4, underwent monoelectron reduction to give a radical species which was detected by EPR at room temperature. The EPR signal has been assigned to [Fe2Cp2(CO)2(μ−CO){μ−η12α,β-CαHCβCMe2}], [2]. The molecular structures of [2]+ and [2] were optimized by DFT calculations. The unpaired electron in [2] is localized mainly at the metal centers and, coherently, [2] does not undergo carbon-carbon dimerization, by contrast with what previously observed for the μ-vinyl radical complex [Fe2Cp2(CO)2(μ−CO){μ−η12-CHCH(Ph)}], [3]. Electron spin density distributions similar to the one of [2] were found for the μ-allenyl radical complexes [Fe2Cp2(CO)2(μ-CO){μ-η12α,β-CαHCβC(R1)(R2)}] (R1 = R2 = H, [4]; R1 = H, R2 = Ph, [5]; R1 = R2 = Ph, [6]).  相似文献   

10.
The SPh functionalized vinyliminium complexes [Fe2{μ-η13-Cγ(R′)Cβ(SPh)CαN(Me)(R)}(μ-CO)(CO)(Cp)2][SO3CF3] [R = Xyl, R′ = Me, 2a; R = Me, R′ = Me, 2b; R = 4-C6H4OMe, R′ = Me, 2c; R = Xyl, R′ = CH2OH, 2d; R = Me, R′ = CH2OH, 2e; Xyl = 2,6-Me2C6H3] are generated in high yields by treatment of the corresponding vinyliminium complexes [Fe2{μ-η13-Cγ(R′)Cβ(H)CαN(Me)(R)}(μ-CO)(CO)(Cp)2][SO3CF3] (1a-e) with NaH in the presence of PhSSPh. Likewise, the diruthenium complex [Ru2{μ-η13-Cγ(Me)Cβ(SPh)CαN(Me)(Xyl)}(μ-CO)(CO)(Cp)2][SO3CF3] (2f) was obtained from the corresponding vinyliminium complex [Ru2{μ-η13-Cγ(Me)Cβ(H)CαN(Me)(Xyl)}(μ-CO)(CO)(Cp)2] (1f). The synthesis of 2c is accompanied by the formation, in comparable amounts, of the aminocarbyne complex [Fe2{μ-CN(Me)(4-C6H4OMe)}(SPh)(μ-CO)(CO)(Cp)2] (3).The molecular structures of 2d, 2e and 3 have been determined by X-ray diffraction studies.  相似文献   

11.
The diiron vinyliminium complexes [Fe2{μ-η13-C(R′)C(H)CN(Me)(R)}(μ-CO)(CO)(Cp)2][SO3CF3] (R=Me, R′ = SiMe3 (1a); R = Me, R′ = CH2OH (1b); R = CH2Ph, R′ = Tol (1c), Tol = 4-MeC6H4; R = CH2Ph, R′ = COOMe (1d); R = CH2Ph, R′ = SiMe3 (1e)) undergo regio- and stereo-selective addition by cyanide ion (from ), affording the corresponding bridging cyano-functionalized allylidene compounds [Fe2{μ-η13-C(R′)C(H)C(CN)N(Me)(R)}(μ-CO)(CO)(Cp)2] (3a-e), in good yields. Similarly, the diiron vinyliminium complexes [Fe2{μ-η13-C(R′)C(R′)CN(Me)(R)}(μ-CO)(CO)(Cp)2][SO3CF3] (R = R′ = Me (2a); R = Me, R′ = Ph (2b); R = CH2Ph, R′ = Me (2c); R = CH2Ph, R′ = COOMe (2d)) react with cyanide and yield [Fe2{μ-η13-C(R′)C(R′)C(CN)N(Me)(R)}(μ-CO)(CO)(Cp)2] (9a-d). The reactions of the vinyliminium complex [Fe2{μ-η13-C(Tol)CHCN(Me)(4-C6H4CF3)}(μ-CO)(CO)(Cp)2][SO3CF3] (4) with NaBH4 and afford the allylidene [Fe2{μ-C(Tol)C(H)C(H)N(Me)(C6H4CF3)}(μ-CO)(CO)(Cp)2] (5) and the cyanoallylidene [Fe2{μ-C(Tol)C(H)C(CN)N(Me)(C6H4CF3)}(μ-CO)(CO)(Cp)2] (6), respectively. Analogously, the diruthenium vinyliminium complex [Ru2{μ-η13-C(SiMe3)CHCN(Me)(CH2Ph)}(μ-CO)(CO)(Cp)2][SO3CF3] (7) reacts with to give [Ru2{μ-η13-C(SiMe3)CHC(CN)N(Me)(CH2Ph)}(μ-CO)(CO)(Cp)2] (8).Finally, cyanide addition to [Fe2{μ-η13-C(COOMe)C(COOMe)CN(Me)(Xyl)}(μ-CO)(CO)(Cp)2][SO3CF3] (2e) (Xyl = 2,6-Me2C6H3), yields the cyano-functionalized bis-alkylidene complex [Fe2{μ-η12-C(COOMe)C(COOMe)(CN)CN(Me)(Xyl)}(μ-CO)(CO)(Cp)2] (10). The molecular structures of 3a and 9a have been elucidated by X-ray diffraction.  相似文献   

12.
The zwitterionic bridging vinyliminium complex [Fe2{μ-η13-C(Tol)C(CS2)CN(Me)2}(μ-CO)(CO)(Cp)2] (5a) undergoes the addition of two equivalents of MeO2C-CC-CO2Me affording the bridging bis-alkylidene complex [Fe2{μ-η13-C(Me)C{C(CO2Me)C(CO2Me)CSC(CO2Me)C(CO2Me)S}CNMe2}(μ-CO)(CO)(Cp)2] (6). One alkyne unit inserts into a C-CS2 bond of the bridging ligand, with consequent rearrangement that leads to the formation of a diene. The reaction shows analogies with the enyne metathesis. The second alkyne is incorporated into the bridging frame via cycloaddition at the thiocarboxylate function, affording a 1,3-dithiolene. The complexes [Fe2{μ-η13-C(R′)C(CS2)CN(Me)(R)}(μ-CO)(CO)(Cp)2] (R = Xyl, R′ = Tol, 5b; R = p-C6H4OMe, R′ = Me, 5c; Xyl = 2,6-Me2C6H3), treated with MeO2C-CC-CO2Me and then with HBF4, undergo the cycloaddition of the alkyne with the dithiocarboxylate group and protonation of the dithiocarboxylate carbon, affording the complexes [Fe2{μ-η13-C(R′)C{C(H)SC(CO2Me)C(CO2Me)S}CN(Me)(R)}(μ-CO)(CO)(Cp)2][BF4] (R = Xyl, R′ = Tol, 7a; R = p-C6H4OMe, R′ = Me, 7b), respectively.The X-ray molecular structure of 6 has been determined.  相似文献   

13.
The mechanism of chloride substitution in CF2CFCl with [Re(CO)5] and [CpFe(CO)2] anions is investigated experimentally and theoretically. The substitution reaction begins with the nucleophile addition to CF2CFCl producing the carbenoid anion [MCF2CFCl] (A) (M = Re(CO)5, CpFe(CO)2). This is shown by trapping the intermediate A with electrophiles - proton donor (t-BuOH) to give MCF2CFClH or with CF2CFRe(CO)5 to give acylmetallate III, and by the formation of the substitution products CF2CFM from the anion A, generated by the deprotonation of MCF2CFClH with t-BuOK. 1,2-Shift of metal carbonyl group concerted with the α-elimination of chloride anion is proposed as the transformation pathway of carbenoid A into CF2CFM. A competing process of carbene insertion into Fe-CO bond is proposed to explain the formation of (XI). The feasibility of these two pathways is confirmed by DFT (B3LYP/SDD and 6-31G) calculations of the carbenes [MCF2CF:] and carbenoid anions [MCF2CFCl]. Transition states (TS) for 1,2-shift (+3.2 kcal/mol) and for nucleophilic addition at CO ligand (+5.4 kcal/mol) are located for [(CO)5ReCF2CFCl], but only one TS corresponding to carbene insertion into Fe-CO bond (+2.1 kcal/mol) is located for [(CO)2CpFeCF2CFCl]. The formation of other newly observed products, F(CO)CHFRe(CO)5 (V) and Cp(CO)2FeCCFeCp(CO)2 (VIII) is also discussed.  相似文献   

14.
The compounds Ru(CCCCFc)(PP)Cp [PP = dppe (1), dppm (2)], have been obtained from reactions between RuCl(PP)Cp and FcCCCCSiMe3 in the presence of KF (1) or HCCCCFc and K[PF6] (2), both with added dbu. The dppe complex reacts with Co2(CO)6(L2) [L2 = (CO)2, dppm] to give 3, 4 in which the Co2(CO)4(L2) group is attached to the outer CC triple bond. The PPh3 analogue of 3 (5) has also been characterised. In contrast, tetracyanoethene reacts to give two isomeric complexes 6 and 7, in which the cyano-olefin has added to either CC triple bond. The reaction of RuCl(dppe)Cp with HCCCCFc, carried out in a thf/NEt3 mixture in the presence of Na[BPh4], gave [Ru{CCC(NEt3)CHFc}(dppe)Cp]BPh4 (8), probably formed by addition of the amine to an (unobserved) intermediate butatrienylidene [Ru(CCCCHFc)(dppe)Cp]+. The reaction of I2 with 8 proceeds via an unusual migration of the alkynyl group to the Cp ring to give [RuI(dppe){η-C5H4CCC(NEt3)CHFc}]I3 (9). Single-crystal X-ray structural determinations of 1, 2 and 4-9 are reported.  相似文献   

15.
Several complexes have been obtained from reactions carried out in early attempts to prepare the diynyl complexes Ru(CCCCR)(dppe)Cp* (R = H, SiMe3). These have been identified crystallographically as the acyl complex Ru{CCC(O)Me}(dppe)Cp* (3), the cationic imido complex [Ru{CCC(NH2)Me}(dppe)Cp*]PF6 (4), the binuclear butenynylallenylidene [{Ru(dppe)Cp*}2{μ-CCC(OMe)CHCMeCC}]PF6 (5), and the bis(ethynyl)cyclobutenylidene [{Ru(dppe)Cp*}2{μ-CCC4H2(SiMe3)CC}]PF6 (6). NMR studies of 5 have revealed the existence of two isomers. Plausible routes for their formation from the putative butatrienylidene intermediate [Ru(CCCCH2)(dppe)Cp*]+ (A) are discussed.  相似文献   

16.
The interaction between Cp(CO)2RePt(μ-CCHPh)(PPh3)2 (1) and Fe2(CO)9 afforded the new heterometallic μ3-vinylidene cluster CpReFePt(μ3-CCHPh)(CO)6(PPh3) (2). An X-ray diffraction study shows the complex 2 possesses a trimetallic Re-Fe-Pt chain core. The bond lengths are Re-Fe 2.8221(8), Fe-Pt 2.5813(8) Å; the Re?Pt distance is 3.3523(7) Å; the bond angle Re-Fe-Pt is 76.55(3)°. The μ3-CCHPh ligand is η1-bound to the Re and Pt atoms and η2-coordinated to the Fe atom. The CC bond length is 1.412(4) Å. The Pt atom is coordinated by the PPh3 and CO groups. Complex 2 is characterized by the IR and 1H, 13C and 31P NMR spectra.  相似文献   

17.
The new ferrole Fe2(CO)6[μ-η24-(Fc)CC{C(H)C(R)S}CC(SiMe3)] [R = SiMe3 (1) and R = Fc (2)] and ruthenoles Ru2(CO)6[μ-η24-(Me3Si)CC{SC(Fc)C(H)}CC(Fc)] 3 and Ru2(CO)6[μ-η24-(Me3Si)CC(SCCFc)C(H)C(Fc)] 4, have been obtained from the reactions of M3(CO)12 (M = Fe, Ru) and FcCCSCCSiMe3 through S-C bond activations and C-C coupling reactions. Thermolysis of Ru2(CO)63243-(Me3Si)CC{SC(Fc)C(SCCSiMe3}Ru(CO)3}CC(Fc)] alone and in the presence of HCCFc, yielded the compounds Ru2(CO)6[μ-η24-(Me3Si)CC{SC(Fc)C(SCCSiMe3)}CC(Fc)] 5 and Ru2(CO)6[μ-η24-(Me3Si)CC{SC(Fc)C(SCCSiMe3)C(H)C(Fc)}CC(Fc)] 6, respectively. The crystal structures of the compounds 1, 3, 4 and 6 are reported.  相似文献   

18.
Reactions of Ru(CCPh)(PPh3)2Cp with (NC)2CCR1R2 (R1 = H, R2 = CCSiPri38; R1 = R2 = CCPh 9) have given η3-butadienyl complexes Ru{η3-C[C(CN)2]CPhCR1R2}(PPh3)Cp (11, 12), respectively, by formal [2 + 2]-cycloaddition of the alkynyl and alkene, followed by ring-opening of the resulting cyclobutenyl (not detected) and displacement of a PPh3 ligand. Deprotection (tbaf) of 11 and subsequent reactions with RuCl(dppe)Cp and AuCl(PPh3) afforded binuclear derivatives Ru{η3-C[C(CN)2]CPhCHCC[MLn]}(PPh3)Cp [MLn = Ru(dppe)Cp 19, Au(PPh3) 20]. Reactions between 8 and Ru(CCCCR)(PP)Cp [PP = (PPh3)2, R = Ph, SiMe3, SiPri3; PP = dppe, R = Ph] gave η1-dienynyl complexes Ru{CCC[C(CN)2]CRCH[CC(SiPri3)]}(PP)Cp (15-18), respectively, in reactions not involving phosphine ligand displacement. The phthalodinitrile C6H(CCSiMe3)(CN)2(NH2)(SiMe3) 10 was obtained serendipitously from (Me3SiCC)2CO and CH2(CN)2, as shown by an XRD structure determination. The XRD structures of precursor 7 and adducts 11, 12 and 17 are also reported.  相似文献   

19.
Under aprotic conditions, Cr(CO)5CNCCl3 (1) reacts with triphenylphosphine in the presence of aromatic aldehydes or ketones to give the α-chloroalkenylisocyanide complexes cis(Z)- and trans(E)-Cr(CO)5CNCClCRR′ {R = H, R′ = 4-C6H4F (7), 4-C6H4-CHC(Cl)NCCr(CO)5 (8)} and Cr(CO)5CNCClCR2 {CR2 = fluorenylidene (9)}. Two further representatives of this class of compounds, Cr(CO)5CNCClCCl2 (10) and Cr(CO)5CN-CClCCl-NCCr(CO)5 (11), have been obtained in low yields by reduction of 1 with zinc. Reactions with pyrrolidine of the isomeric mixtures 7 and 8 afford the alkylideneamino(pyrrolidino)carbene complexes 13 and 14. An X-ray study of 13 shows the two π-systems within the amino(imino)carbene ligand to be approximately orthogonal to one another. With tris(dimethylamino)phosphine in the place of triphenylphosphine, complex 1, 9-fluorenone plus a secondary amine combine to the 4-amino-Δ3-oxazolin-2-ylidene chromium complexes 17 and 19, the latter of which has been protonated, alkylated and subject to an X-ray structure analysis. Reasons for the different modes of reaction in the system 1/PR3/RR′CO are discussed and compared with the “dependence on the metal” of reactions in the system LnMCN-CH-PPh3/RR′CO {LnM = (OC)5Cr, (OC)5W versus Cl(Ph3P)2Pt+}.  相似文献   

20.
The trifluorovinyl phosphine complexes [Cp*RhCl2{PR3−x(CFCF2)x}] (1x = 1, a R = Ph, b Pri, c Et; 2x = 2, R = Ph) have been prepared by treatment of [Cp*RhCl(μ-Cl)]2 with the relevant phosphine. The salt [Cp*RhCl(CNBut){PPh2(CFCF2)}]BF4, 3, was prepared by addition of ButNC to 1a in the presence of NaBF4. The salt [Cp*RhCl{κP,κS-(CF2CF)PPh(C6H4SMe-2)}]BF4 was prepared as a mixture of cis (5a) and trans (5b) isomers by treatment of [Cp*RhCl(μ-Cl)]2 with the phosphine-thioether (CF2CF)PPh(C6H4SMe-2), 4, in the presence of NaBF4. The structures of 1a-c and 5a have been determined by single-crystal X-ray diffraction. Intramolecular dehydrofluorinative carbon-carbon coupling between pentamethylcyclopentadienyl and trifluorovinylphosphine ligands of 1a, 3 and 5 has been attempted. No reaction was observed on treatment of the neutral complex [Cp*RhCl2{PPh2(CFCF2)}], 1a, with proton sponge, however, 5a underwent dehydrofluorinative coupling to yield [{η5,κP,κS-(C5Me4CH2CFCF)PPh(C6H4SMe-2)}RhCl]BF4, 6. Other reactions, in particular addition of HF across the vinyl bonds of 5, occurred leading to a mixture of products. The cation of 3 underwent similar reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号